On cherche les extrema de la fonction $f : \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x, y) = 4x^2 + y^2$ dans le disque $x^2 + y^2 \leq 4$.

Dans la figure ci-contre on a tracé les courbes de niveau $0, 1, 4, 9, 16$ de f ainsi que le disque. Il semblerait que :
- le point $(0, 0)$ est un minimum global,
- le point $(2, 0)$ est un maximum global,
- le point $(-2, 0)$ est un maximum global,
- le point $(0, 2)$ est un minimum local,
- le point $(0, -2)$ est un minimum local.

Étude de f dans l’ouvert, i.e. l’ensemble $\{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 4\}$

Recherche des points critiques de f

$$\nabla f(x, y) = \begin{pmatrix} 8x \\ 2y \end{pmatrix}$$

Donc

$$\nabla f(x, y) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \implies \quad \begin{cases} 8x = 0 \\ 2y = 0 \end{cases}$$

L’unique point critique de f est le point $(x_0, y_0) = (0, 0)$.

Étude de la nature du point critique par matrice Hessienne

$$\partial_{xx} f(x, y) = 8 \quad \partial_{yy} f(x, y) = 2 \quad \partial_{xy} f(x, y) = 0$$

Donc

$$H_f(x_0, y_0) = \begin{pmatrix} 8 & 0 \\ 0 & 2 \end{pmatrix}$$

et $\det(H_f(x_0, y_0)) = 16 > 0$.

Conclusion : le point $(0, 0)$ est un minimum local de f.

Étude directe de la nature du point critique

On n’est pas obligé d’utiliser la matrice Hessienne pour établir la nature du point (x_0, y_0). En effet, il suffit d’étudier le signe de la fonction distance au voisinage du point critique :

$$d(h, k) \equiv f(x_0 + h, y_0 + k) - f(x_0, y_0) = 4(x_0 + h)^2 + (y_0 + k)^2 - 4x_0^2 - y_0^2 = 4h^2 + k^2 \geq 0 \quad \text{pour} \ (h, k) = (0, 0).$$

Puisque $d(h, k) \geq 0$, on conclut que le point (x_0, y_0) est un minimum local de f.

Conclusion : $(0, 0)$ est un minimum local de f et $f(0, 0) = 0$; comme $f(x, y) > f(0, 0)$ pour tout $(x, y) \neq (0, 0)$, on conclut que $(0, 0)$ est un minimum global de f.

Étude de f sur le bord, i.e. dans l’ensemble $\{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 4\}$

Soit $g(x, y) = x^2 + y^2 - 4$ et $L(x, y, \lambda) = f(x, y) - \lambda g(x, y) = 4x^2 + y^2 - \lambda(x^2 + y^2 - 4)$.

Recherche des points critiques de L

$$\nabla L(x, y, \lambda) = \begin{pmatrix} 8x - 2\lambda x \\ 2y - 2\lambda y \\ 4 - 2x^2 - 2y^2 \end{pmatrix}$$

Donc

$$\nabla L(x, y, \lambda) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \implies \quad \begin{cases} 2x(4 - \lambda) = 0, \\ 2y(1 - \lambda) = 0, \\ x^2 + y^2 = 4. \end{cases}$$

Les points critiques de L sont les points

$$\begin{align*}
(x_1, y_1, \lambda_1) &= (2, 0, 4), \\
(x_2, y_2, \lambda_2) &= (-2, 0, 4), \\
(x_3, y_3, \lambda_3) &= (0, 2, 1), \\
(x_4, y_4, \lambda_4) &= (0, -2, 1).
\end{align*}$$
Étude de la nature des points critiques

On a
\[\partial_{xx}\mathcal{L}(x, y, \lambda) = 8 - 2\lambda \quad \partial_{yy}\mathcal{L}(x, y, \lambda) = 2 - 2\lambda \quad \partial_{xy}\mathcal{L}(x, y, \lambda) = 0 \]

donc
\[\partial_{xx}\mathcal{L}(x_1, y_1, \lambda_1) \times \partial_{yy}\mathcal{L}(x_1, y_1, \lambda_1) - (\partial_{xy}\mathcal{L}(x_1, y_1, \lambda_1))^2 = 0, \]
\[\partial_{xx}\mathcal{L}(x_2, y_2, \lambda_2) \times \partial_{yy}\mathcal{L}(x_2, y_2, \lambda_2) - (\partial_{xy}\mathcal{L}(x_2, y_2, \lambda_2))^2 = 0, \]
\[\partial_{xx}\mathcal{L}(x_3, y_3, \lambda_3) \times \partial_{yy}\mathcal{L}(x_3, y_3, \lambda_3) - (\partial_{xy}\mathcal{L}(x_3, y_3, \lambda_3))^2 = 0, \]
\[\partial_{xx}\mathcal{L}(x_4, y_4, \lambda_4) \times \partial_{yy}\mathcal{L}(x_4, y_4, \lambda_4) - (\partial_{xy}\mathcal{L}(x_4, y_4, \lambda_4))^2 = 0. \]

Conclusion : la méthode du lagrangien permet seulement de trouver les candidats extrema de \(f \) sous la contrainte \(g \) mais ne permet pas de conclure s'ils sont effectivement des extrema.

Étude directe de la nature des points critiques

On n'est pas obligé d'utiliser la sous-matrice Hessienne de \(\mathcal{L} \) pour établir la nature des points critiques. En effet, il suffit d'étudier le signe de la fonction distance

\[d_i(h, k) \equiv f(x_i + h, y_i + k) - f(x_i, y_i), \quad i = 1, 2, 3, 4 \]

pour \((h, k) = (0, 0)\) et \(g(x_i + h, y_i + k) = 0 \):

\[d_i(h, k) = 4(x_i + h)^2 + (y_i + k)^2 - 4x_i^2 - y_i^2 \]
\[g(x_i + h, y_i + k) = (x_i + h)^2 + (y_i + k)^2 - 4 \]
\[\text{si } \partial_x g(x_i, y_i) \neq 0 \text{ alors l'équation } g(x_i + h, y_i + k) = 0 \text{ définit implicitement } k \text{ en fonction de } h \text{ au voisinage de } h = 0 : \]

en résolvant \(g(x_i + h, y_i + k) = 0 \) on trouve \((y_i + k)^2 = 4 - (x_i + h)^2\); en remplaçant l'expression ainsi trouvée dans \(d_i(h, k) \) on trouve la fonction d'une seule variable

\[\tilde{d}_i(h) = 3(x_i + h)^2 + 4 - 4x_i^2 - y_i^2 \]

\[\text{si } \partial_y g(x_i, y_i) \neq 0 \text{ alors l'équation } g(x_i + h, y_i + k) = 0 \text{ définit implicitement } h \text{ en fonction de } k \text{ au voisinage de } k = 0 : \]

en résolvant \(g(x_i + h, y_i + k) = 0 \) on trouve \((x_i + h)^2 = 4 - (y_i + k)^2\); en remplaçant l'expression ainsi trouvée dans \(d_i(h, k) \) on trouve la fonction d'une seule variable

\[\tilde{d}_i(k) = 16 - 3(y_i + k)^2 - 4x_i^2 - y_i^2 \]

Conclusion :

\[\tilde{d}_1(k) = -3k^2 \leq 0 \text{ donc le point } (x_1, y_1) \text{ est un minimum local de } f \text{ sous la contrainte } g, \]
\[\tilde{d}_2(k) = -3k^2 \leq 0 \text{ donc le point } (x_2, y_2) \text{ est un minimum local de } f \text{ sous la contrainte } g, \]
\[\tilde{d}_3(k) = 3h^2 \geq 0 \text{ donc le point } (x_3, y_3) \text{ est un maximum local de } f \text{ sous la contrainte } g, \]
\[\tilde{d}_4(k) = 3h^2 \geq 0 \text{ donc le point } (x_4, y_4) \text{ est un maximum local de } f \text{ sous la contrainte } g. \]

Conclusion : les points \((\pm 2, 0)\) sont des minima locaux de \(f \) sous la contrainte \(g \) et \(f(\pm 2, 0) = 16 \); les points \((0, \pm 2)\) sont des maxima locaux (et donc globaux) de \(f \) sous la contrainte \(g \) et \(f(0, \pm 2) = 4 \).