Thermodynamics is a funny subject. . .

The first time you go through it, you don't understand it at all.
The second time you go through it, you think you understand it, except for one or two small points.

The third time you go through it, you know you don't understand it, but by that time you are so used to it, it doesn't bother you any more.

Some notes on thermodynamics

 Construction of (in-)coherent thermodynamic lawsG. Faccanoni

IMATH - Université de Toulon

Generality of Thermodynamics

Thermodynamics describes average properties of macroscopic matter in equilibrium.
Macroscopic matter: large objects that consist of many atoms and molecules.
Average properties: properties (such as volume, pressure, temperature etc.) that do not depend on the detailed positions and velocities of atoms and molecules of macroscopic matter. Such quantities are called thermodynamic coordinates, variables or parameters.
Equilibrium: state of a macroscopic system in which all average properties do not change with time.

- Thermodynamics predicts that these properties of a system in equilibrium are not independent from each other. Therefore, if we measure a subset of these properties, we can calculate the rest of them using thermodynamic relations.
- Thermodynamics also provides an approximate description of relatively slow processes. During such slow processes, system is in quasi-equilibrium because in the process the system goes through a sequence of nearly equilibrium states.

Motivation

For the purpose of CFD calculations, thermodynamic properties must be calculated

- over a wide range of states
- starting from different couples of input variables
- a check must be made wether the calculated thermodynamic point is located in a pure region or in the VLE region (Vapor-Liquid Equilibrium)

Difficulties on the construction of coherent thermodynamic laws

Motivation

For the purpose of CFD calculations, thermodynamic properties must be calculated

- over a wide range of states
- starting from different couples of input variables
- a check must be made wether the calculated thermodynamic point is located in a pure region or in the VLE region (Vapor-Liquid Equilibrium)

Difficulties on the construction of coherent thermodynamic laws
(1) How to obtain an accurate (and useful in CFD) description of a pure region?

Motivation

For the purpose of CFD calculations, thermodynamic properties must be calculated

- over a wide range of states
- starting from different couples of input variables
- a check must be made wether the calculated thermodynamic point is located in a pure region or in the VLE region (Vapor-Liquid Equilibrium)

Difficulties on the construction of coherent thermodynamic laws
(1) How to obtain an accurate (and useful in CFD) description of a pure region?
(2) How to obtain the same values for all thermodynamic variables by performing calculations with different couples of input variables, but corresponding to the same thermodynamic state?

Motivation

For the purpose of CFD calculations, thermodynamic properties must be calculated

- over a wide range of states
- starting from different couples of input variables
- a check must be made wether the calculated thermodynamic point is located in a pure region or in the VLE region (Vapor-Liquid Equilibrium)

Difficulties on the construction of coherent thermodynamic laws
(1) How to obtain an accurate (and useful in CFD) description of a pure region?
(2) How to obtain the same values for all thermodynamic variables by performing calculations with different couples of input variables, but corresponding to the same thermodynamic state?
(3) How to obtain an accurate description of the transition from a pure region to the VLE region?

Motivation

For the purpose of CFD calculations, thermodynamic properties must be calculated

- over a wide range of states
- starting from different couples of input variables
- a check must be made wether the calculated thermodynamic point is located in a pure region or in the VLE region (Vapor-Liquid Equilibrium)

Difficulties on the construction of coherent thermodynamic laws
(1) How to obtain an accurate (and useful in CFD) description of a pure region?
(2) How to obtain the same values for all thermodynamic variables by performing calculations with different couples of input variables, but corresponding to the same thermodynamic state?
(3) How to obtain an accurate description of the transition from a pure region to the VLE region?
(c) CFD requires extremely fast algorithms for thermodynamic properties of working fluids because they are frequently used in the inner iteration cycles of the process calculations. How to balance accuracy and reasonable computing times?

Contents

1. EoS for pure phases: one component with one-phase (liquid or vapour)
2. EoS with liquid-vapour phase transition
3. Some analytical EoS
4. Working with real values and VLE region
5. What I haven't told you

Notations I

- EoS Equation of state

In this talk, all variables are intensive

- $\tau>0$ specific volume (and $\varrho=1 / \tau$ specific density)
- ε specific internal energy
- s specific (physical) entropy
- T temperature
- P pressure
- μ Gibbs potential or free enthalpy or chemical potential (synonyms for a one-component system)
- h enthalpy
- f free energy (or Helmholtz potential)
- c speed of sound
- c_{P} specific heat at constant pressure (isobar heat capacity)
- c_{V} specific heat at constant volume (isochoric heat capacity)

Notations II

A physicists' convention:

to avoid confusion when we compute partial derivative performing changes of thermodynamic variables, we shall specify outside a vertical bar the list of the independent variables maintained constant.

For instance if we think of P as being a function of T and τ, we write

$$
\left.\frac{\partial P}{\partial \tau}\right|_{T}
$$

to denote partial derivative of P in τ with T held constant.

If we write

$$
\left.\frac{\partial P}{\partial \tau}\right|_{s}
$$

we think of P as being another function which variables are τ and s.

1. EoS for pure phases: one component with one-phase (liquid or vapour)

1.1 A complete EoS

1.2 Legendre's transform
1.3 Thermodynamic potentials and state function
1.4 Entropy as a complete EoS

A complete EoS

A complete EoS - I

Complete equation of state (= Fundamental equation)

Specific internal energy ε is everywhere uniquely (and smoothly) determined by its specific volume τ and its specific entropy s :

$$
\begin{aligned}
\varepsilon: \mathbb{R}^{+} \times \mathbb{R} & \rightarrow \mathbb{R}^{+} \\
(\tau, s) & \mapsto \varepsilon(\tau, s)
\end{aligned}
$$

The fundamental thermodynamics relation is

$$
\mathrm{d} \varepsilon=-P \mathrm{~d} \tau+T \mathrm{~d} s
$$

where P is the pressure and T the temperature so that

$$
(\tau, s) \mapsto P \stackrel{\text { def }}{=}-\left.\left.\frac{\partial \varepsilon}{\partial \tau}\right|_{s} \quad(\tau, s) \mapsto T \stackrel{\text { def }}{=} \frac{\partial \varepsilon}{\partial s}\right|_{\tau}
$$

$(\tau, s) \mapsto P$ and $(\tau, s) \mapsto T$ are called incomplete EoS.

A complete EoS

A complete EoS - II

Standard thermodynamics requires that

- $\left.T \stackrel{\text { def }}{=} \frac{\partial \varepsilon}{\partial s}\right|_{\tau}>0$
- Hessian matrix is positive definite, i.e.

$$
\begin{gathered}
\operatorname{det}\left(H_{\varepsilon}\right)=\left.\left.\frac{\partial^{2} \varepsilon}{\partial \tau^{2}}\right|_{s} \frac{\partial^{2} \varepsilon}{\partial s^{2}}\right|_{\tau}-\left(\left.\frac{\partial^{2} \varepsilon}{\partial \tau^{2}}\right|_{s}\right)^{2}>0 \\
\left.\frac{\partial^{2} \varepsilon}{\partial \tau^{2}}\right|_{s}>0 \\
\left.\frac{\partial^{2} \varepsilon}{\partial s^{2}}\right|_{\tau}>0
\end{gathered}
$$

Let us note that this implies that ε is strictly convex but the converse is wrong.

[^0] interpretation of phase transition.

- τ and s are independent variables while P and T are derivatives
- It is often more convenient to have P and T as independent variables because they are simpler to measure or control in experiments
- Our goal is to derive functions of variables P and/or T that contain all information about the system of interest as the complete $\operatorname{EoS}(\tau, s) \mapsto \varepsilon$.
- These functions (thermodynamic potentials) can be obtained by a mathematical trick called the Legendre transform.

Legendre's transform - II

Let H a convex l.s.c. and proper function:

$$
\begin{aligned}
H: \mathbb{R}^{n} & \rightarrow(-\infty,+\infty] \\
\mathbf{p} & \mapsto H(\mathbf{p})
\end{aligned}
$$

The Legendre transform H^{*} of H is

$$
\begin{aligned}
H^{*}: \mathbb{R}^{n} & \rightarrow(-\infty,+\infty] \\
\mathbf{q} & \mapsto H^{*}(\mathbf{q}) \stackrel{\text { def }}{=} \sup _{\mathbf{p} \in \mathbb{R}^{n}}(\mathbf{p} \cdot \mathbf{q}-H(\mathbf{p}))
\end{aligned}
$$

- H^{*} is likewise convex, I.s.c. and proper and $\left(H^{*}\right)^{*}=H$
- If H is \mathcal{C}^{2} and strictly convex then

$$
\begin{aligned}
H^{*}: \mathbb{R}^{n} & \rightarrow(-\infty,+\infty] \\
\mathbf{q} & \mapsto H^{*}(\mathbf{q}) \stackrel{\text { def }}{=} \mathbf{p}(\mathbf{q}) \cdot \mathbf{q}-H(\mathbf{p}(\mathbf{q})) \quad \text { with } \mathbf{p}=\mathbf{p}(\mathbf{q}) \text { solving } \mathbf{q}=\nabla H(\mathbf{p}) .
\end{aligned}
$$

There are 3 possible Legendre transforms of $(s, \tau) \mapsto \varepsilon$, according as to whether we transform

- in the variable s only,
- in τ only,
- or in (s, τ) together.

Legendre's transform - III

It is customary in thermodynamics to take the negative of the mathematical Legendre transform:

$$
-\sup \{\cdots\}=\inf \{-\cdots\}
$$

- The Helmholtz free energy f (sometimes noted a) is

$$
f(T, \tau)=\inf _{s}(\varepsilon(s, \tau)-T s) \stackrel{\star}{=} \varepsilon(s, \tau)-T s \quad \text { where } s=s(T, \tau) \text { solves } T=\left.\frac{\partial \varepsilon}{\partial s}\right|_{\tau}
$$

- The enthalpy h is

$$
h(s, P)=\inf _{\tau}(\varepsilon(s, \tau)+P \tau) \stackrel{\star}{=} \varepsilon(s, \tau)+P \tau \quad \text { where } \tau=\tau(s, P) \text { solves }-P=\left.\frac{\partial \varepsilon}{\partial \tau}\right|_{s}
$$

- The Gibbs potential ($=$ chemical potential $=$ free enthalpy) μ is

$$
\begin{aligned}
\mu(T, P) & =\inf _{(s, \tau)}(\varepsilon(s, \tau)+P \tau-T s) \\
& \stackrel{\star}{=} \varepsilon(s, \tau)+P \tau-T s \quad \text { where } s=s(T, P) \text { and } \tau=\tau(T, P) \text { solve }\left\{\begin{array}{l}
T=\left.\frac{\partial \varepsilon}{\partial s}\right|_{\tau} \\
-P=\left.\frac{\partial \varepsilon}{\partial \tau}\right|_{s}
\end{array}\right.
\end{aligned}
$$

Thermodynamic potentials and state function

Potential	Natural variables	Conjugate variables	Differential	Maxwell relations
ε	(s, τ)	$T=\left.\frac{\partial \varepsilon}{\partial s}\right\|_{\tau} \quad P=-\left.\frac{\partial \varepsilon}{\partial \tau}\right\|_{s}$	$\mathrm{d} \varepsilon=T \mathrm{~d} s-P \mathrm{~d} \tau$	$\left.\frac{\partial T}{\partial \tau}\right\|_{s}=-\left.\frac{\partial P}{\partial s}\right\|_{\tau}$
$h=\varepsilon+P \tau$	(s, P)	$T=\left.\frac{\partial h}{\partial s}\right\|_{P} \quad \tau=\left.\frac{\partial h}{\partial P}\right\|_{s}$	$\mathrm{d} h=T \mathrm{~d} s+\tau \mathrm{d} P$	$\left.\frac{\partial T}{\partial P}\right\|_{s}=\left.\frac{\partial \tau}{\partial s}\right\|_{P}$
$f=\varepsilon-T s$	(T, τ)	$s=-\left.\frac{\partial f}{\partial T}\right\|_{\tau} \quad P=-\left.\frac{\partial f}{\partial \tau}\right\|_{T}$	$\mathrm{d} f=-s \mathrm{~d} T-P \mathrm{~d} \tau$	$\left.\frac{\partial s}{\partial \tau}\right\|_{T}=\left.\frac{\partial P}{\partial T}\right\|_{\tau}$
$\mu=\varepsilon-T s+P \tau$	(T, P)	$s=-\left.\frac{\partial \mu}{\partial T}\right\|_{P} \quad \tau=\left.\frac{\partial \mu}{\partial P}\right\|_{T}$	$\mathrm{d} \mu=-s \mathrm{~d} T+\tau \mathrm{d} P$	$\left.\frac{\partial s}{\partial P}\right\|_{T}=-\left.\frac{\partial \tau}{\partial T}\right\|_{P}$
By exploiting the			By exploiting the \uparrow	

- The internal energy ε is strictly convex in (s, τ)
- The enthalpy h is strictly concave in P, strictly convex in s
- The Helmholtz free energy f is strictly concave in T, strictly convex in τ
- The Gibbs free energy μ is strictly concave in (T, P)

Entropy as a complete EoS - I

Owing $T>0$, the relation $(\tau, s) \mapsto(\tau, \varepsilon)$ is a local diffeomorphism so we can define a complete equation of state as

$$
\begin{aligned}
s: \mathbb{R}^{+} \times \mathbb{R}^{+} & \rightarrow \mathbb{R} \\
(\tau, \varepsilon) & \mapsto s(\tau, \varepsilon)
\end{aligned}
$$

The fundamental thermodynamics relation $T \mathrm{~d} s=\mathrm{d} \varepsilon+P \mathrm{~d} \tau$ implies that

$$
\left.\frac{\partial s}{\partial \varepsilon}\right|_{\tau}=\frac{1}{T}>0,\left.\quad \frac{\partial s}{\partial \tau}\right|_{\varepsilon}=\frac{P}{T}
$$

The entropy has a definite negative Hessian matrix, thus s is strictly concave.

Entropy as a complete EoS - II

Remark:

- we can compute other 3 potentials (and 4 Maxwell's relations) using Legendre's transform of $(\tau, \varepsilon) \mapsto s$:
- the ??? function

$$
?\left(\frac{P}{T}, \varepsilon\right)=\inf _{\tau}\left(s(\tau, \varepsilon)-\frac{P}{T} \tau\right) \stackrel{\star}{=} s(\tau, \varepsilon)-\frac{P}{T} \tau \quad \text { where } \tau=\tau\left(\frac{P}{T}, \varepsilon\right) \text { solves } \frac{P}{T}=\left.\frac{\partial s}{\partial \tau}\right|_{\varepsilon}
$$

- the Massieu function

$$
j\left(\tau, \frac{1}{T}\right)=\inf _{\varepsilon}\left(s(\tau, \varepsilon)-\frac{\varepsilon}{T}\right) \stackrel{\star}{=} s(\tau, \varepsilon)-\frac{\varepsilon}{T} \quad \text { where } \varepsilon=\varepsilon\left(\tau, \frac{1}{T}\right) \text { solves } \frac{1}{T}=\left.\frac{\partial s}{\partial \varepsilon}\right|_{\tau}
$$

- the Planck function

$$
\begin{aligned}
& r\left(\frac{P}{T}, \frac{\mathbf{1}}{T}\right)=\inf _{(\tau, \varepsilon)}\left(s(\tau, \varepsilon)-\frac{P}{T} \tau-\frac{\varepsilon}{T}\right) \stackrel{\star}{=} s(\tau, \varepsilon)-\frac{P}{T} \tau-\frac{\varepsilon}{T} \\
& \quad \text { where } \tau=\tau\left(\frac{P}{T}, \varepsilon\right) \text { and } \varepsilon=\varepsilon\left(\frac{P}{T}, \frac{\mathbf{1}}{T}\right) \text { solve }\left\{\begin{array}{l}
\frac{P}{T}=\left.\frac{\partial s}{\partial \tau}\right|_{\varepsilon} \\
\frac{1}{T}=\left.\frac{\partial s}{\partial \varepsilon}\right|_{\tau}
\end{array}\right.
\end{aligned}
$$

- if $P>0$ then $(\tau, s) \mapsto(\varepsilon, s)$ is also a local diffeomorphism and we can compute other 3 potentials (and 4 Maxwell's relations) using Legendre's transform of $(\varepsilon, s) \mapsto \tau$

2. EoS with liquid-vapour phase transition

2.1 Principal facts and ideas

2.2 Maxwell construction with cubic law
2.3 What about the speed of sound in the VLE region?

First Order Phase Transitions: Phase Equilibrium

- A phases is a part of a system, uniform in chemical composition and physical properties.
- A phase transition is an abrupt or a qualitative change of some macroscopic property of a thermodynamic system as a function of a thermodynamic coordinate.
For example, in a liquid-vapor phase transition, density of the material undergoes an abrupt change.
substance must have the same value in all phases in which that substance appears
The surfaces intersect along the coexistence curve.
The transparent yellow extensions of the surface represent metastable states.
The slope of the (white) isotherms in the
pressure direction is the volume.
\qquad

First Order Phase Transitions: Phase Equilibrium

- A phases is a part of a system, uniform in chemical composition and physical properties.
- A phase transition is an abrupt or a qualitative change of some macroscopic property of a thermodynamic system as a function of a thermodynamic coordinate.
For example, in a liquid-vapor phase transition, density of the material undergoes an abrupt change.
- When two phases are at equilibrium they have the same T and P, and the μ of any substance must have the same value in all phases in which that substance appears

The surfaces intersect along the coexistence curve.
The transparent yellow extensions of the surface represent metastable states. The slope of the (white) isotherms in the pressure direction is the volume.

[^1]
First Order Phase Transitions: Phase Equilibrium

- A phases is a part of a system, uniform in chemical composition and physical properties.
- A phase transition is an abrupt or a qualitative change of some macroscopic property of a thermodynamic system as a function of a thermodynamic coordinate.
For example, in a liquid-vapor phase transition, density of the material undergoes an abrupt change.
- When two phases are at equilibrium they have the same T and P, and the μ of any substance must have the same value in all phases in which that substance appears

Source http://www.public.iastate.edu/~jolls/

$$
(P, T) \mapsto \mu_{\kappa}
$$

The surfaces intersect along the coexistence curve.
The transparent yellow extensions of the surface represent metastable states.
The slope of the (white) isotherms in the pressure direction is the volume.

Principal facts and ideas
The $(\tau, T) \mapsto P$ surface

Principal facts and ideas

Projections of the $(\tau, T) \mapsto P$ surface

Maxwell construction with cubic law

"Cubic EoS" is an incomplete EoS $(\tau, T) \mapsto P$ that can be written as a polynomial of degree 3 in τ (e.g. Van der Waals, Peng Robinson, Soave Redlich Kwong...)

E.g. reduced Van der Waals law

$$
(\tau, T) \mapsto P \stackrel{\text { def }}{=} \frac{8 T}{3 \tau-1}-\frac{3}{\tau^{2}}
$$

Maxwell construction with cubic law

Maxwell construction with cubic law

Maxwell construction with cubic law

Maxwell construction with cubic law

Maxwell construction with cubic law

What about a complete EoS with phase transition?

- In an ideally isolated system, all internal processes lead to an increase in the total entropy of the system. When the entropy reaches its maximum value, the system is at equilibrium.
where co is the concave envelope (i.e. the smallest concave function greater than or equal to s in some region)

What about a complete EoS with phase transition?

- In an ideally isolated system, all internal processes lead to an increase in the total entropy of the system. When the entropy reaches its maximum value, the system is at equilibrium.
- In a system with liquid and vapor with no chemical reactions, the equilibrium condition is that the temperature, pressure, and Gibbs free energy must be equal in both phases in VLE region. This condition is equivalent to compute the concave hull of an entropy:
(3) If we have one EoS describing both phases (e.g. Van der Waals), then 5 is not concave and we define describing both phases (e.g. Van der Waals), then s is not (3) If we have two EoS (e.g. NASG), one for each pure phase, then
where co is the concave envelope (i.e. the smallest concave function greater than or equal to s in some region)

What about a complete EoS with phase transition?

- In an ideally isolated system, all internal processes lead to an increase in the total entropy of the system. When the entropy reaches its maximum value, the system is at equilibrium.
- In a system with liquid and vapor with no chemical reactions, the equilibrium condition is that the temperature, pressure, and Gibbs free energy must be equal in both phases in VLE region. This condition is equivalent to compute the concave hull of an entropy:
(1) If we have one EoS $(\tau, \varepsilon) \mapsto s$ describing both phases (e.g. Van der Waals), then s is not concave and we define

$$
(\tau, \varepsilon) \mapsto s^{\mathbf{e q}}(\tau, \varepsilon)=\operatorname{co}\{s(\tau, \varepsilon)\}
$$

[cf. Ph. Helluy, H. Mathis]
where co is the concave envelope (i.e. the smallest concave function greater than or equal to s in some region)

What about a complete EoS with phase transition?

- In an ideally isolated system, all internal processes lead to an increase in the total entropy of the system. When the entropy reaches its maximum value, the system is at equilibrium.
- In a system with liquid and vapor with no chemical reactions, the equilibrium condition is that the temperature, pressure, and Gibbs free energy must be equal in both phases in VLE region. This condition is equivalent to compute the concave hull of an entropy:
(1) If we have one EoS $(\tau, \varepsilon) \mapsto s$ describing both phases (e.g. Van der Waals), then s is not concave and we define

$$
(\tau, \varepsilon) \mapsto s^{\mathbf{e q}}(\tau, \varepsilon)=\operatorname{co}\{s(\tau, \varepsilon)\}
$$

[cf. Ph. Helluy, H. Mathis]
(3) If we have two $\operatorname{EoS}(\tau, \varepsilon) \rightarrow s_{\kappa}$ (e.g. NASG), one for each pure phase, then

$$
(\tau, \varepsilon) \mapsto s^{\mathbf{e q}}(\tau, \varepsilon)=c o\left\{\max _{(\tau, \varepsilon)}\left\{s_{\text {liq }}(\tau, \varepsilon), s_{\text {vap }}(\tau, \varepsilon)\right\}\right\}
$$

[cf. Th. Barberon, Ph. Helluy, H. Mathis, N. Seguin ...]
where co is the concave envelope (i.e. the smallest concave function greater than or equal to s in some region)

Concave envelope

$$
(\tau, \varepsilon) \mapsto \quad s_{\mathrm{liq}}(\tau, \varepsilon), s_{\mathrm{vap}}(\tau, \varepsilon)
$$

Concave envelope

$$
(\tau, \varepsilon) \mapsto \quad \max _{(\tau, \varepsilon)}\left\{s_{\mathrm{liq}}(\tau, \varepsilon), s_{\mathrm{vap}}(\tau, \varepsilon)\right\}
$$

Concave envelope

$$
(\tau, \varepsilon) \mapsto \operatorname{co}\left\{\max _{(\tau, \varepsilon)}\left\{\operatorname{siq}_{\text {liq }}(\tau, \varepsilon), s_{\text {vap }}(\tau, \varepsilon)\right\}\right\}
$$

Concave envelope

$$
(\tau, \varepsilon) \mapsto \operatorname{co}\left\{\max _{(\tau, \varepsilon)}\left\{\operatorname{siq}_{\text {liq }}(\tau, \varepsilon), s_{\text {vap }}(\tau, \varepsilon)\right\}\right\}
$$

What about the speed of sound in the VLE region?

Let $\mathbf{w} \stackrel{\text { def }}{=}(\tau, \varepsilon)$.

$$
c^{2}(\mathbf{w})=\tau^{2}\left(\left.P^{\mathbf{e q}}(\mathbf{w}) \frac{\partial P^{\mathrm{eq}}}{\partial \varepsilon}\right|_{\tau}-\left.\frac{\partial P^{\mathbf{e q}}}{\partial \tau}\right|_{\varepsilon}\right)
$$

What about the speed of sound in the VLE region?

What about the speed of sound in the VLE region?

Let $\mathbf{w} \stackrel{\text { def }}{=}(\tau, \varepsilon)$.
$c^{2}(\mathbf{w})=\tau^{2}\left(\left.P^{\mathbf{e q}}(\mathbf{w}) \frac{\partial P^{\mathrm{eq}}}{\partial \varepsilon}\right|_{\tau}-\left.\frac{\partial P^{\mathrm{eq}}}{\partial \tau}\right|_{\varepsilon}\right)=-\tau^{2} T^{\mathrm{eq}}(\mathbf{w})\left[\begin{array}{ll}{\left[P^{\mathbf{e q}}(\mathbf{w}),\right.} & -1] H_{s} \mathbf{e q}(\mathbf{w})\left[\begin{array}{c}P^{\mathrm{eq}}(\mathbf{w}) \\ -1\end{array}\right]\end{array} \leq 0\right.$

What about the speed of sound in the VLE region?

Let $\mathbf{w} \stackrel{\text { def }}{=}(\tau, \varepsilon)$.

Hessian matrix of $\mathbf{w} \mapsto s^{\text {eq }}$

- for all \mathbf{w} in pure phase region

$$
\mathbf{v}^{\top} H_{s e q}(\mathbf{w}) \mathbf{v}<0 \quad \forall \mathbf{v} \neq \mathbf{0},
$$

- for all \mathbf{w} in VLE region

$$
\exists!\mathbf{v}(\mathbf{w}) \neq 0 \text { s.t. }(\mathbf{v}(\mathbf{w}))^{\top} H_{\mathrm{s}} \mathbf{e q}(\mathbf{w}) \mathbf{v}(\mathbf{w})=0 .
$$

What about the speed of sound in the VLE region?

Let $\mathbf{w} \stackrel{\text { def }}{=}(\tau, \varepsilon)$.

Hessian matrix of $\mathbf{w} \mapsto s^{\text {eq }}$

- for all \mathbf{w} in pure phase region

$$
\mathbf{v}^{\top} H_{s} \mathrm{eq}(\mathbf{w}) \mathbf{v}<0 \quad \forall \mathbf{v} \neq \mathbf{0},
$$

- for all win VLE region

$$
\exists!\mathbf{v}(\mathbf{w}) \neq 0 \text { s.t. }(\mathbf{v}(\mathbf{w}))^{\top} H_{\mathrm{s}} \mathbf{e q}(\mathbf{w}) \mathbf{v}(\mathbf{w})=0 .
$$

Theorem (G.F., S. Kokh, G. Allaire - M2AN 2012)
$\forall \mathbf{w}$ in VLE region, $\mathbf{v}(\mathbf{w}) \not \equiv\left[P^{e q}(\mathbf{w}),-1\right]$

3. Some analytical EoS

3.1 How to define a complete EoS
3.2 From an incomplete $(\tau, T) \mapsto P$ EoS to a complete $(\tau, \varepsilon) \mapsto s \mathrm{EoS}$
3.3 Some examples

How to define a complete EoS

- It is very common in practice to specify the EoS of a material via a specification of the function $(\tau, T) \mapsto P$. Such a formulation is just an incomplete EoS.
- In the compressible Euler equations it is necessary to specify the incomplete $\operatorname{EoS}(\varepsilon, \tau) \mapsto P$.

In these cases, the difficulty is to obtain an accurate function for pure phases also coherent with saturation.

Idea

Derive a complete EoS that is compatible with a given incomplete EoS, by finding a temperature and specific entropy that satisfies the first law of thermodynamics.

From an incomplete $(\tau, T) \mapsto P$ EoS to a complete $(\tau, \varepsilon) \mapsto s \operatorname{EoS}$ ।

Goal

Find the internal entropy $s=s(\tau, \varepsilon)$ for a particular material for which the incomplete equation of state can be written as

$$
P(\tau, T)=\frac{r T}{\tau-b}-v(\tau)
$$

where $r>0$ is the universal gas constant, $b \geq 0$ is material-specific constant and v is a function of τ (e.g. for Van der Waals $v(\tau)=\frac{a}{\tau^{2}}$).

- The complete equation of state can be obtained by integration of

$$
\begin{aligned}
\mathrm{d} s & =\frac{P}{T} \mathrm{~d} \tau+\frac{1}{T} \mathrm{~d} \varepsilon \\
& =\left(\frac{r}{\tau-b}-\frac{1}{T} v(\tau)\right) \mathrm{d} \tau+\frac{1}{T} \mathrm{~d} \varepsilon
\end{aligned}
$$

- The entropy s is an exact differential form, so that

$$
\left.\frac{\partial\left(\frac{1}{T}\right)}{\partial \tau}\right|_{\varepsilon}=\left.\frac{\partial\left(\frac{P}{T}\right)}{\partial \varepsilon}\right|_{\tau}=-\left.v(\tau) \frac{\partial\left(\frac{1}{T}\right)}{\partial \varepsilon}\right|_{\tau} \quad \text { i.e. } \underbrace{\left.\left.\frac{\partial\left(\frac{1}{T}\right)}{\partial \tau}\right|_{\varepsilon} \frac{\partial \varepsilon}{\partial\left(\frac{1}{T}\right)}\right|_{\tau}}_{\left.\frac{\partial \varepsilon}{\partial \tau}\right|_{\frac{1}{T}}}=-v(\tau) \text {. }
$$

thus we can define $\frac{1}{T}$ as any function of $\varepsilon-\int v(\tau) \mathrm{d} \tau$.

- Finally we compute the complete EoS by integration of

$$
\mathrm{d} s=\frac{P}{T} \mathrm{~d} \tau+\frac{1}{T} \mathrm{~d} \varepsilon .
$$

We note that, given $\tau \mapsto v(\tau)$,

- there is no uniqueness on the choice of T (and then on s)!
- if $(\tau, \varepsilon) \mapsto s$ is not concave everywhere, we replace s by its concave envelope.

Van der Waals: $P(\tau, T)=\frac{r T}{\tau-b}-v(\tau)$ and $v(\tau)=\frac{a}{\tau^{2}}$
$\frac{1}{T}$ must be a function $\varepsilon+\int v(\tau) \mathrm{d} \tau=\varepsilon+\frac{\partial}{\tau}$, e.g.

$$
\frac{1}{T}=\frac{c_{v}}{\frac{a}{\tau}+\varepsilon}
$$

and the complete EoS can be obtained by integration of

$$
\mathrm{d} s=\frac{P}{T} \mathrm{~d} \tau+\frac{1}{T} \mathrm{~d} \varepsilon=\left(\frac{r}{\tau-b}-\frac{a}{\tau^{2}} \frac{c_{v}}{\frac{a}{\tau}+\varepsilon}\right) \mathrm{d} \tau+\left(\frac{c_{v}}{\frac{a}{\tau}+\varepsilon}\right) \mathrm{d} \varepsilon .
$$

We start by integrating in ε :

$$
s(\tau, \varepsilon)=\int \frac{1}{T} \mathrm{~d} \varepsilon+\omega(\tau)=\int \frac{c_{v}}{\frac{a}{\tau}+\varepsilon} \mathrm{d} \varepsilon+\omega(\tau)=c_{v} \ln \left(\frac{a}{\tau}+\varepsilon\right)+\omega(\tau)
$$

and then

$$
\left.\frac{\partial s}{\partial \tau}\right|_{\varepsilon}=-\frac{a}{\tau^{2}} \frac{c_{v}}{\frac{a}{\tau}+\varepsilon}+\omega^{\prime}(\tau)
$$

Since $\left.\frac{\partial s}{\partial \tau}\right|_{\varepsilon}=\frac{P}{T}=\frac{r}{\tau-b}-\frac{c_{v}}{\tau} \frac{a}{\tau^{2}+\varepsilon}$ then $\omega^{\prime}(\tau)=\frac{r}{\tau-b}$ and finally

$$
s(\tau, \varepsilon)=c_{v} \ln \left(\frac{a}{\tau}+\varepsilon\right)+r \ln (\tau-b)+s_{0} .
$$

Some examples

Some examples

EoS	$v(\tau)$	$\varepsilon-\int v(\tau) \mathrm{d} \tau$	$\frac{1}{T}$
Noble-Abel Stiffened Gas	a	$\varepsilon-a \tau$	$\frac{c_{V}}{\varepsilon-a \tau+a b-q}$
Van der Waals	$\frac{a}{\tau^{2}}$	$\varepsilon+\frac{a}{\tau}$	$\frac{c_{v}}{\varepsilon+\frac{a}{\tau}}$
Soave Redlich Kwong	$\frac{a}{\tau(\tau+b)}$	$\varepsilon+\frac{a}{b} \ln \left(\frac{\tau+b}{\tau}\right)$	$\frac{c_{v}}{\varepsilon+\frac{a}{b} \ln \left(\frac{\tau+b}{\tau}\right)}$
Peng Robinson	$\frac{a}{\tau^{2}+2 b \tau-b^{2}}$	$\varepsilon+\frac{a}{2 \sqrt{2} b} \ln \left(\frac{\tau+(1+\sqrt{2}) b}{\tau+(1-\sqrt{2}) b}\right)$	$\frac{C_{V}}{\varepsilon+\frac{a}{2 \sqrt{2} b} \ln \left(\frac{\tau+(1+\sqrt{2}) b}{\tau+(1-\sqrt{2}) b}\right)}$
Martin Hu	$\frac{a_{1}}{(\tau-b)\left(\tau-b_{1}\right)}-\frac{a_{2}}{(\tau-b)^{2}\left(\tau-b_{1}\right)}$
No name 1	$\frac{a}{\tau(\tau-b)}$	$\varepsilon+\frac{a}{b} \ln \left(\frac{\tau}{\tau-b}\right)$	$\frac{c_{V}}{\varepsilon+\frac{a}{b} \ln \left(\frac{\tau}{\tau-b}\right)}$
No name 2	$\frac{a}{(\tau-b)^{2}}$	$\varepsilon+\frac{a}{\tau-b}$	$\frac{c_{V}}{\varepsilon+\frac{a}{\tau-b}}$

4. Working with real values and VLE region

4.1 A cubic EoS (e.g. Van der Waals)
4.2 A complete EoS for pure phases (e.g. Stiffened Gas)
4.3 An incomplete EoS

A cubic EoS (e.g. Van der Waals)

In general, we work with a reduced version of the EoS by defining the following dimensionless quantity

$$
P_{R} \stackrel{\text { def }}{=} \frac{P}{P_{c}}, \quad T_{R} \stackrel{\text { def }}{=} \frac{T}{T_{c}}, \quad \tau_{R} \stackrel{\text { def }}{=} \frac{\tau}{\tau_{c}}
$$

where $\left(\tau_{c}, P_{c}, T_{c}\right)$ is the critical point. We obtain the reduced EoS (which is the same for all fluids).

Van der Waals

$$
(\tau, T) \mapsto P \stackrel{\text { def }}{=} \frac{r T}{\tau-b}-\frac{a}{\tau^{2}}, \quad \tau>b
$$

The critical point $\left(\tau_{c}, P_{c}, T_{c}\right)$ is defined as the only point such that $\left.\frac{\partial P}{\partial \tau}\right|_{T}=0$ and $\left.\frac{\partial^{2} P}{\partial \tau^{2}}\right|_{T}=0$. We have $T_{c}=\frac{8 a}{27 b r}, \tau_{c}=3 b$ and $P_{c}=\frac{a}{27 b^{2}}$ so that

$$
\left(\tau_{R}, T_{R}\right) \mapsto P_{R} \stackrel{\text { def }}{=} \frac{8 T_{R}}{3 \tau_{R}-1}-\frac{3}{\tau_{R}^{2}}, \quad \frac{1}{3}<\tau_{R}<+\infty
$$

Having chosen the expression of entropy, how to determine the parameters describing each pure phase to best fit with saturated curves?

$$
s=c_{v} \ln (\varepsilon-q-\pi \tau)+c_{v}(\gamma-1) \ln (\tau)+s_{0}
$$

Each phase is described by its own SG EoS, so that we have to compute five constants for each phase:

- specific heat at constant volume $c_{V_{K}}$
- adiabatic coefficient γ_{κ}
- reference pressure π_{κ}
- binding energy q_{k}
- reference entropy $\left(s_{0}\right)_{\kappa}$

Method from [O. Le Metayer, R. Saurel]

For a given temperature \bar{T}, the experimental data needed for the computation are the pressure at saturation $P_{\exp }^{s}(\bar{T})$, the enthalpies at saturation $h_{k, \exp }^{s}(\bar{T})$ and the volumes at saturation $\tau_{\kappa, \exp }^{s}(\bar{T})$.

- Step I: computation of $c_{p_{K}}$ and q_{κ}.

Analytical expression of the SG enthalpy: $h_{\kappa}(T, P)=q_{\kappa}+c_{p_{\kappa}} T$ (independent of P). We performs a linear approximation of the experimental enthalpies between two reference states T_{0} and T_{1} (or by least-square approximation):

$$
c_{p_{\kappa}}=\frac{h_{\kappa, \exp }^{s}\left(T_{1}\right)-h_{\kappa, \exp }^{s}\left(T_{0}\right)}{T_{1}-T_{0}}, \quad q_{\kappa}=h_{\kappa, \exp }^{s}\left(T_{0}\right)-c_{p_{\kappa}} T_{0}
$$

A complete EoS for pure phases (e.g. Stiffened Gas)

A complete EoS for pure phases (e.g. Stiffened Gas) III

- Step II: computation of π_{κ}.

At saturation, there is an algebraic relation between the temperature and the pressure, e.g. we can write $P=P^{s}(T)$. Thus for the specific volumes at saturation we have

$$
\tau_{\kappa}^{s}(T)=\tau_{\kappa}\left(T, P^{s}(T)\right)=\frac{\left(c_{p_{\kappa}}-c_{v_{\kappa}}\right) T}{P^{s}(T)+\pi_{\kappa}}, \quad \Longrightarrow \quad \frac{\tau_{\kappa}^{s}\left(T_{1}\right)}{\tau_{\kappa}^{s}\left(T_{0}\right)}=\frac{\left(P^{s}\left(T_{0}\right)+\pi_{\kappa}\right) T_{1}}{\left(P^{s}\left(T_{1}\right)+\pi_{\kappa}\right) T_{0}},
$$

so that we can determine an averaged value of the coefficient π_{κ} using experimental values of the volume and the pressure at saturation

$$
\pi_{\kappa}=\frac{T_{0} \tau_{\kappa, \exp }^{s}\left(T_{1}\right) P_{\exp }^{s}\left(T_{1}\right)-T_{1} \tau_{\kappa, \exp }^{s}\left(T_{0}\right) P_{\exp }^{s}\left(T_{0}\right)}{T_{1} \tau_{\kappa, \exp }^{s}\left(T_{0}\right)-T_{0} \tau_{\kappa, \exp }^{s}\left(T_{1}\right)} .
$$

- Step III: computation of $c_{V_{K}}$ and γ_{κ}.

$$
c_{v_{\kappa}}=c_{p_{\kappa}}-\frac{P_{\exp }^{s}\left(T_{0}\right)+\pi_{\kappa}}{T_{0}} \tau_{\kappa, \exp }^{s}\left(T_{0}\right) \quad \Longrightarrow \quad \gamma_{\kappa}=\frac{c_{p_{\kappa}}}{c_{v_{\kappa}}}
$$

A complete EoS for pure phases (e.g. Stiffened Gas) IV

- Step V: computation of q_{k}^{\prime}.

At thermodynamic equilibrium, the two Gibbs potentials are equal:

$$
A \ln \left(P^{s}(T)+\pi_{g}\right)-B \ln \left(P^{s}(T)+\pi_{\ell}\right)-C(\ln T-1)+\frac{D}{T}+q_{\ell}^{\prime}-q_{g}^{\prime}=0
$$

with

$$
A \stackrel{\text { def }}{=} c_{p_{g}}-c_{V_{g}}, \quad B \stackrel{\text { def }}{=} c_{p_{\ell}}-c_{v_{\ell}}, \quad C \stackrel{\text { def }}{=} c_{p_{g}}-c_{p_{\ell}}, \quad D \stackrel{\text { def }}{=} q_{g}-q_{\ell} .
$$

By convention, we take $q_{\ell}^{\prime}=0 \mathrm{~J} \cdot \mathrm{~K}^{-1}$ and determine the coefficient q_{g}^{\prime} using experimental values of the pressure at saturation

$$
q_{g}^{\prime}=A \ln \left(P_{\exp }^{s}\left(T_{0}\right)+\pi_{g}\right)-B \ln \left(P_{\exp }^{s}\left(T_{0}\right)+\pi_{\ell}\right)-C\left(\ln T_{0}-1\right)+\frac{D}{T_{0}}
$$

and finally

$$
\left(s_{0}\right)_{\kappa}=q_{\kappa}^{\prime}-c_{V_{\kappa}} \gamma_{\kappa} \ln \left(c_{V_{\kappa}}\right)-c_{V_{\kappa}}\left(\gamma_{\kappa}-1\right) \ln \left(\gamma_{\kappa}-1\right) .
$$

A complete EoS for pure phases (e.g. Stiffened Gas)

What about SG EoS for liq-vap phase transition at high pressure?

Temperature at $P=15.5 \mathrm{MPa}$ for water

- SG EoS: $T_{\kappa}(h, \backslash \mathbb{R})=\frac{h-q_{k}}{c_{p, \kappa}}$
- NASG EoS: $T_{\kappa}(h, P)=\frac{h-q_{\kappa}-b_{\kappa} P}{c_{p, \kappa}}$

A complete EoS for pure phases (e.g. Stiffened Gas)

What about SG EoS for liq-vap phase transition at high pressure?

Temperature at $P=15.5 \mathrm{MPa}$ for water

- SG EoS: $T_{\kappa}(h$, R $)=\frac{h-q_{k}}{c_{p, \kappa}}$
- NASG EoS: $T_{\kappa}(h, P)=\frac{h-q_{\kappa}-b_{\kappa} P}{c_{p, \kappa}}$

IAPWS

cf. talk O. Hurisse

An incomplete EoS - I

Tabulated laws at $p=p_{0}$

Do you really want a complete EoS?
Or do you want just an incomplete EoS respecting some conditions (e.g. positivity, monotonicity, saturation etc.)?

For instance: how to define the incomplete EoS $\left(h, p=p_{0}\right) \mapsto T$ accurate with table values?

An incomplete EoS

An incomplete EoS - II

Tabulated laws at $p=p_{0}$

Isobaric Data for $P=15.500 \mathrm{MPa}$

An incomplete EoS - III

Tabulated laws at $p=p_{0}$

- In tables we can find $\left\{h_{i},\left(c_{p}\right)_{i}\right\}_{i \in \mathfrak{J}_{\kappa}}$ for a given pressure $p=p_{0}$
- Since $T \mathrm{~d} s=\mathrm{d} h-\tau \mathrm{d} P$ then

$$
\frac{1}{c_{P}}=\left.\frac{\partial T}{\partial h}\right|_{P}
$$

- Approximation of $\left(h, p=p_{0}\right) \mapsto \frac{1}{\left(c_{p}\right)_{k}}$ by least squares on the set $\left\{h_{i},\left(c_{p}\right)_{i}\right\}_{i \in \mathcal{I}_{k}}$ and

$$
T_{\kappa}\left(h, p=p_{0}\right) \stackrel{\text { def }}{=} T^{s}\left(p_{0}\right)+\int_{h_{\kappa}^{s}\left(p_{\mathbf{0}}\right)}^{h} \frac{1}{\left(c_{p}\right)_{\kappa}} \mathrm{d} h
$$

(e.g. if $1 / c_{p}$ is approximated by a polynomial of degree $1, T$ is a polynomial of degree 2)

Properties

$$
\left(h, p=p_{0}\right) \mapsto T_{\kappa}\left(h, p=p_{0}\right) \text { is }
$$

- continuous
- positive
- strictly increasing
- saturation exactly holds

An incomplete EoS

An Asymptotic Simplified Low Mach Model for the core of a PWR

$$
\begin{aligned}
& \quad p(t, \mathbf{x})=p_{0}+\bar{p}(t, \mathbf{x}) \text { with } \frac{\bar{p}(t, \mathbf{x})}{p(t, \mathbf{x})}=\mathcal{O}\left(\mathrm{M}^{2}\right) \\
& \left\{\begin{array}{l}
\operatorname{div} \mathbf{u}=\frac{\beta\left(h, p_{0}\right)}{p_{0}} \Phi \\
\partial_{t} h+\mathbf{u} \cdot \nabla h=\tau\left(h, p_{0}\right) \Phi \\
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\tau\left(h, p_{0}\right) \nabla \bar{p}=\tau\left(h, p_{0}\right) \operatorname{div}(\sigma(\mathbf{u}))+\mathbf{g}
\end{array}\right.
\end{aligned}
$$

- Unknowns
- Given quantities
- Boundary conditions
- EoS
- How to compute EoS with real values

An incomplete EoS

An Asymptotic Simplified Low Mach Model for the core of a PWR

$$
\begin{aligned}
& \quad p(t, \mathbf{x})=p_{0}+\bar{p}(t, \mathbf{x}) \text { with } \frac{\bar{p}(t, \mathbf{x})}{p(t, \mathbf{x})}=\mathcal{O}\left(\mathrm{M}^{2}\right) \\
& \left\{\begin{array}{l}
\operatorname{div} \mathbf{u}=\frac{\beta\left(h, p_{0}\right)}{p_{0}} \Phi \\
\partial_{t} h+\mathbf{u} \cdot \nabla h=\tau\left(h, p_{0}\right) \Phi \\
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\tau\left(h, p_{0}\right) \nabla \bar{p}=\tau\left(h, p_{0}\right) \operatorname{div}(\sigma(\mathbf{u}))+\mathbf{g}
\end{array}\right.
\end{aligned}
$$

- Unknowns
- $(t, \mathbf{x}) \mapsto \mathbf{u}$ velocity
- $(t, x) \mapsto h$ enthalpy
- $(t, \mathbf{x}) \mapsto \bar{p}$ dynamic pressure
- Given quantities
- Boundary conditions
- EoS
- How to compute EoS with real values

An incomplete EoS

An Asymptotic Simplified Low Mach Model for the core of a PWR

$$
\begin{aligned}
& \quad p(t, \mathbf{x})=p_{0}+\bar{p}(t, \mathbf{x}) \text { with } \frac{\bar{p}(t, \mathbf{x})}{p(t, \mathbf{x})}=\mathcal{O}\left(\mathrm{M}^{2}\right) \\
& \left\{\begin{array}{l}
\operatorname{div} \mathbf{u}=\frac{\beta\left(h, p_{0}\right)}{p_{0}} \Phi \\
\partial_{t} h+\mathbf{u} \cdot \nabla h=\tau\left(h, p_{0}\right) \Phi \\
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\tau\left(h, p_{0}\right) \nabla \bar{p}=\tau\left(h, p_{0}\right) \operatorname{div}(\sigma(\mathbf{u}))+\mathbf{g}
\end{array}\right.
\end{aligned}
$$

- Unknowns
- Given quantities
- $(t, \mathbf{x}) \mapsto \Phi \geq 0$ power density
- g gravity
- p_{0} thermodynamic pressure (constant)
- Boundary conditions
- EoS
- How to compute EoS with real values

An incomplete EoS

An Asymptotic Simplified Low Mach Model for the core of a PWR

$$
\begin{gathered}
p(t, \mathbf{x})=p_{0}+\bar{p}(t, \mathbf{x}) \text { with } \frac{\bar{p}(t, \mathbf{x})}{p(t, \mathbf{x})}=\mathcal{O}\left(\mathrm{M}^{2}\right) \\
\left\{\begin{array}{l}
\operatorname{div} \mathbf{u}=\frac{\beta\left(h, p_{0}\right)}{p_{0}} \Phi \\
\partial_{t} h+\mathbf{u} \cdot \nabla h=\tau\left(h, p_{0}\right) \Phi \\
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\tau\left(h, p_{0}\right) \nabla \bar{p}=\tau\left(h, p_{0}\right) \operatorname{div}(\sigma(\mathbf{u}))+\mathbf{g}
\end{array}\right.
\end{gathered}
$$

- Unknowns
- Given quantities
- Boundary conditions

- EoS
- How to compute EoS with real values

An Asymptotic Simplified Low Mach Model for the core of a PWR

$$
\begin{aligned}
& \quad p(t, \mathbf{x})=p_{0}+\bar{p}(t, \mathbf{x}) \text { with } \frac{\bar{p}(t, \mathbf{x})}{p(t, \mathbf{x})}=\mathcal{O}\left(\mathrm{M}^{2}\right) \\
& \left\{\begin{array}{l}
\operatorname{div} \mathbf{u}=\frac{\beta\left(h, p_{0}\right)}{p_{0}} \Phi \\
\partial_{t} h+\mathbf{u} \cdot \nabla h=\tau\left(h, p_{0}\right) \Phi \\
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\tau\left(h, p_{0}\right) \nabla \bar{p}=\tau\left(h, p_{0}\right) \operatorname{div}(\sigma(\mathbf{u}))+\mathbf{g}
\end{array}\right.
\end{aligned}
$$

- Unknowns
- Given quantities
- Boundary conditions
- EoS $\left.\left(h, p_{0}\right) \mapsto \tau \Longrightarrow\left(h, p_{0}\right) \mapsto \beta \stackrel{\text { def }}{=} p_{0} \frac{\partial \tau\left(h, p_{0}\right)}{\partial h}\right|_{p_{0}}$ dilatability coefficient
- Liquid and vapour are characterized by their thermodynamic properties: $\left(h, p_{0}\right) \mapsto \tau_{\kappa}$
- In the mixture, full equilibrium between liquid and vapour phases: $T=T^{s}\left(p_{0}\right)$ and we define values at saturation: $h_{\kappa}^{s}\left(p_{0}\right) \stackrel{\text { def }}{=} h_{\kappa}\left(p_{0}, T^{s}\left(p_{0}\right)\right)$ and $\tau_{\kappa}^{s}\left(p_{0}\right) \stackrel{\text { def }}{=} \tau_{\kappa}\left(h_{\kappa}^{s}, p_{0}\right)$

$$
\tau\left(h, p_{0}\right)= \begin{cases}\tau_{\ell}\left(h, p_{0}\right), & \text { if } h \leq h_{\ell}^{s}\left(p_{0}\right), \\ \tau_{m}\left(h, p_{0}\right) & \text { if } h_{\ell}^{s}\left(p_{0}\right)<h<h_{g}^{s}\left(p_{0}\right), \\ \tau_{g}\left(h, p_{0}\right), & \text { if } h \geq h_{g}^{s}\left(p_{0}\right)\end{cases}
$$

- How to compute EoS with real values

An Asymptotic Simplified Low Mach Model for the core of a PWR

$$
\begin{aligned}
& \quad p(t, \mathbf{x})=p_{0}+\bar{p}(t, \mathbf{x}) \text { with } \frac{\bar{p}(t, \mathbf{x})}{p(t, \mathbf{x})}=\mathcal{O}\left(\mathrm{M}^{2}\right) \\
& \left\{\begin{array}{l}
\operatorname{div} \mathbf{u}=\frac{\beta\left(h, p_{0}\right)}{p_{0}} \Phi \\
\partial_{t} h+\mathbf{u} \cdot \nabla h=\tau\left(h, p_{0}\right) \Phi \\
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\tau\left(h, p_{0}\right) \nabla \bar{p}=\tau\left(h, p_{0}\right) \operatorname{div}(\sigma(\mathbf{u}))+\mathbf{g}
\end{array}\right.
\end{aligned}
$$

- Unknowns
- Given quantities
- Boundary conditions
- EoS
- How to compute EoS with real values
- Construction of the tabulated values β_{i} using relation $\beta=\frac{p}{c \sqrt{T}} \sqrt{\frac{1}{c_{v}}-\frac{1}{c_{p}}}$
- Approximation of $h \mapsto \beta_{\kappa}(h)$ by least squares on $\left\{h_{i}, \beta_{i}\right\}_{i \in \mathcal{J}_{k}}$
- Deduction of $\tau_{\kappa}(h, p)=\tau_{\kappa}^{s}(p)+\int_{h_{\kappa}^{s}(p)}^{h} \frac{\beta_{\kappa}(h)}{p} \mathrm{~d} h$
$h \mapsto \beta_{\kappa}(h)=\left.p_{0} \frac{\partial \tau\left(h, p_{0}\right)}{\partial h}\right|_{p_{0}}$ exactly holds
$h \mapsto \tau_{\kappa}(h)$ is continuous, positive, strictly increasing and saturation exactly holds

Influence of EoS: asymptotic 1d solution

Schematic comparison of the phases repartition in the core for different EoS (exact steady state solution)

5. What I haven't told you

What I haven't told you - I

Model

- Extensive vs intensive parameters
- An arbitrary system with $r>1$ components and/or M phases [cf. talks of O. Hurisse, R. Privat, H. Mathis, S. Müller, F. Smai]
- Miscible mixture [cf. talk of H. Mathis]
- Metastability [cf. talk of F. James]
- Second order phase transition, supercritical etc.
- Partial equilibrium/disequilibrium [cf. talks of O. Hurisse, T. Flåtten]
- Other analytical (incomplete) EoS, like SAFT [cf. R. Privat]
- Library (especially written in Python) for water, in general based on IAPWS [cf. O. Hurisse or M. DiLorenzo, Ph. Lafont ...]

What I haven't told you - II

Computation

- How to compute the equilibrium entropy for using in CFD [cf. talk of O. Hurisse]
- Concave hull used to define the entropy at equilibrium can be computed by an inf-convolution and FLT [cf. H. Mathis and Ph. Helluy]
- The entropy at equilibrium can be interpreted as a solution of a maximisation problem w.r.t. mass/volume/energy fractions
To compute the solution of this problem we have to solve a system of algebraic equations. [cf. Th. Barberon, Ph. Helluy, N. Seguin]
A trick to simplify this system to obtain only one equation can be to use an approximation of saturated curves τ_{κ}^{s} and ε_{κ}^{s} parametrized by P or T. [cf. G. Allaire, G.F., O. Hurisse, S. Kokh, ...]
- the problem to find tabulated values for other species that water (e.g. sodium)

Thank you for your attention

IN THIS HOUSE, WE OBEY THE LAWS OF THERMODYNAMICS!

Transformation rules I

Considering a general implicit function f linking three variables x, y and $z: f(x, y, z)=0$. If the function can be inverted, it will be possible to write the explicit forms $x=x(y, z), y=y(x, z)$ and $z=z(x, y)$. Some rules for transforming partial derivatives (valid for \mathcal{C}^{1} functions) are used in thermodynamics:

$$
\begin{aligned}
\left.\frac{\partial x}{\partial y}\right|_{z} & =\frac{1}{\left.\frac{\partial y}{\partial x}\right|_{z}} \\
\left.\left.\left.\frac{\partial x}{\partial y}\right|_{z} \frac{\partial y}{\partial z}\right|_{x} \frac{\partial z}{\partial x}\right|_{y} & =-1
\end{aligned}
$$

[cyclic relation]

Composite derivative rule:
let $F(x, y)=G(a(x, y), b(x, y))$ then

$$
\begin{aligned}
& \left.\frac{\partial F}{\partial x}\right|_{y}=\left.\left.\frac{\partial G}{\partial a}\right|_{b} \frac{\partial a}{\partial x}\right|_{y}+\left.\left.\frac{\partial G}{\partial b}\right|_{a} \frac{\partial b}{\partial x}\right|_{y} \\
& \left.\frac{\partial F}{\partial y}\right|_{x}=\left.\left.\frac{\partial G}{\partial a}\right|_{b} \frac{\partial a}{\partial y}\right|_{x}+\left.\left.\frac{\partial G}{\partial b}\right|_{a} \frac{\partial b}{\partial y}\right|_{x}
\end{aligned}
$$

$$
\text { if } a(x, y)=x \text { then }
$$

$$
\begin{aligned}
& \left.\frac{\partial F}{\partial x}\right|_{y}=\left.\frac{\partial G}{\partial x}\right|_{b}+\left.\left.\frac{\partial G}{\partial b}\right|_{x} \frac{\partial b}{\partial x}\right|_{y} \\
& \left.\frac{\partial F}{\partial y}\right|_{x}=\left.\left.\frac{\partial G}{\partial b}\right|_{x} \frac{\partial b}{\partial y}\right|_{x}
\end{aligned}
$$

[^0]: If ε is not strictly convex (for example when the graph of ε contains a line or a plane), the geometry has the physical

[^1]: Source http

