Saint Valery sur Somme, 17/10/2016

On a diphasic low Mach model for a heat exchanger Theoretical and 1D/3D numerical results

Gloria Faccanoni¹

Stéphane Dellacherie² Bérénice Grec³ Yohan Penel⁴

¹IMATH – Université de Toulon

²École Polytechnique de Montréal & CEA Saclay

³MAP5 – Université Paris Descartes

⁴Team ANGE (CETMEF, LJLL, CNRS, INRIA) - UPMC

With the financial support of NEEDS (CNRS grant)

Outline

- **2** The Low Mach Hypothesis
- 3 A Low Mach model for a heat exchanger
- 4 Theoretical results: 1D-model
- **5** Numerical schemes
- **6** Conclusion & Perspectives

Pressurized Water Reactor

Pressurized Water Reactor

Pressurized Water Reactor

1. Context 2. LM Hyp 3. Model 4. 1D 5. Schemes 6. C&P

Core of a Pressurized Water Reactor

The Low Mach Hypothesis

Core at Pressurized Water Reactor

Nominal regime

- Inlet velocity: $|\mathbf{u}| \simeq 5 \,\mathrm{m \cdot s^{-1}}$
- Speed of sound at $p_0 = 155$ bar and T = 300 °C: $c_\ell^* \simeq 1.0 \times 10^3$ m \cdot s⁻¹

Mach number
$$M = \frac{|\mathbf{u}|}{c_{\ell}^*} \simeq 5 \times 10^{-3} \ll 1$$

This is also the case

- for incidental regime
- for some accidental scenarios such as a LOFA (Loss of Flow Accident)¹ induced by a coolant pump trip event even if phase change occurs

Acoustics negligible (no shock waves) BUT high heat transfers

¹Except for a very fast depressurization such as a LOCA (Loss of Coolant Accident)

Core at Pressurized Water Reactor

Nominal regime

- Inlet velocity: $|\mathbf{u}| \simeq 5 \,\mathrm{m \cdot s^{-1}}$
- Speed of sound at $p_0 = 155$ bar and T = 300 °C: $c_\ell^* \simeq 1.0 \times 10^3$ m \cdot s⁻¹

Mach number
$$M = \frac{|\mathbf{u}|}{c_{\ell}^*} \simeq 5 \times 10^{-3} \ll 1$$

This is also the case

- for incidental regime
- for some accidental scenarios such as a LOFA (Loss of Flow Accident)¹ induced by a coolant pump trip event even if phase change occurs

Acoustics negligible (no shock waves) BUT high heat transfers

¹Except for a very fast depressurization such as a LOCA (Loss of Coolant Accident)

6 / 41

Which model?

- Low Mach number: $M \ll 1$
- High heat transfers: $\operatorname{div} \mathbf{u} \neq \mathbf{0}$

 \Downarrow

- Compressible Navier-Stokes system → model with acoustics and with heat transfers
- Asymptotic low Mach model (obtained formally by filtering out the acoustics waves) → model without acoustics but with heat transfers

A Low Mach model for a heat exchanger

- Governing equations
- Boundary Conditions
- Equation(s) of State

8/41

A Low Mach model for a heat exchanger

• Governing equations

Boundary Conditions
Equation(s) of State

9/41

$$p(t, \mathbf{x}) = p_0(t) + \bar{p}(t, \mathbf{x})$$
 with $\frac{\bar{p}(t, \mathbf{x})}{p(t, \mathbf{x})} = \mathcal{O}(M^2)$

$$\begin{cases} \operatorname{div}(\mathbf{u}) = -\frac{p_0'(t)}{\varrho(h, p_0)(c^*(h, p_0))^2} + \frac{\beta(h, p_0)}{p_0(t)} [\Phi + \operatorname{div}(\lambda \cdot \nabla T(h, p_0))] \\ \varrho(h, p_0) \Big(\partial_t h + \mathbf{u} \cdot \nabla h\Big) = \Phi + p_0'(t) + \operatorname{div}(\lambda \cdot \nabla T(h, p_0)) \\ \varrho(h, p_0) \Big(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}\Big) + \nabla \bar{p} = \operatorname{div}(\sigma(\mathbf{u})) + \varrho(h, p_0)\mathbf{g} \end{cases}$$

- Unknowns
- ► Given quantities
- **Equation Of State:**

$$p(t, \mathbf{x}) = p_0(t) + \overline{p}(t, \mathbf{x})$$
 with $\frac{\overline{p}(t, \mathbf{x})}{p(t, \mathbf{x})} = \mathcal{O}(M^2)$

$$\begin{cases} \operatorname{div}(\mathbf{u}) = -\frac{p_0'(t)}{\varrho(h, p_0)(c^*(h, p_0))^2} + \frac{\beta(h, p_0)}{p_0(t)} [\Phi + \operatorname{div}(\lambda \cdot \nabla T(h, p_0))] \\ \varrho(h, p_0) \Big(\partial_t h + \mathbf{u} \cdot \nabla h\Big) = \Phi + p_0'(t) + \operatorname{div}(\lambda \cdot \nabla T(h, p_0)) \\ \varrho(h, p_0) \Big(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}\Big) + \nabla \overline{\mathbf{p}} = \operatorname{div}(\sigma(\mathbf{u})) + \varrho(h, p_0)\mathbf{g} \end{cases}$$

Unknowns

- $(t, \mathbf{x}) \mapsto \mathbf{u}$ velocity
- $(t, \mathbf{x}) \mapsto h$ enthalpy
- $(t, x) \mapsto \bar{p}$ dynamic pressure
- Given quantities
- Equation Of State:

$$p(t,\mathbf{x}) = p_0(t) + \bar{p}(t,\mathbf{x})$$
 with $\frac{\bar{p}(t,\mathbf{x})}{p(t,\mathbf{x})} = \mathcal{O}(M^2)$

$$\begin{cases} \operatorname{div}(\mathbf{u}) = -\frac{p_0'(t)}{\varrho(h, p_0)(c^*(h, p_0))^2} + \frac{\beta(h, p_0)}{p_0(t)} [\Phi + \operatorname{div}(\lambda \cdot \nabla T(h, p_0))] \\ \varrho(h, p_0) \Big(\partial_t h + \mathbf{u} \cdot \nabla h\Big) = \Phi + p_0'(t) + \operatorname{div}(\lambda \cdot \nabla T(h, p_0)) \\ \varrho(h, p_0) \Big(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}\Big) + \nabla \bar{p} = \operatorname{div}(\sigma(\mathbf{u})) + \varrho(h, p_0)\mathbf{g} \end{cases}$$

Unknowns

▼ Given quantities

- $(t, \mathbf{x}) \mapsto \Phi \ge 0$ power density
- g gravity
- $t \mapsto p_0$ thermodynamic pressure
- Equation Of State:

$$p(t, \mathbf{x}) = p_0(t) + \bar{p}(t, \mathbf{x})$$
 with $\frac{\bar{p}(t, \mathbf{x})}{p(t, \mathbf{x})} = \mathcal{O}(M^2)$

$$\begin{cases} \operatorname{div}(\mathbf{u}) = -\frac{p_0'(t)}{\varrho(h, p_0)(c^*(h, p_0))^2} + \frac{\beta(h, p_0)}{p_0(t)} [\Phi + \operatorname{div}(\lambda \cdot \nabla T(h, p_0))] \\ \varrho(h, p_0) \Big(\partial_t h + \mathbf{u} \cdot \nabla h\Big) = \Phi + p_0'(t) + \operatorname{div}(\lambda \cdot \nabla T(h, p_0)) \\ \varrho(h, p_0) \Big(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}\Big) + \nabla \bar{p} = \operatorname{div}(\sigma(\mathbf{u})) + \varrho(h, p_0)\mathbf{g} \end{cases}$$

- Unknowns
- Given quantities
- ▼ Equation Of State: $(h, p_0) \mapsto \varrho$ density

$$\begin{cases} (h, p_0) \mapsto \beta \stackrel{\text{def}}{=} -\frac{p_0}{\varrho^2(h, p_0)} \left. \frac{\partial \varrho}{\partial h} \right|_{p_0} & \text{compressibility coefficient} \\ (h, p_0) \mapsto T & \text{temperature} \\ (h, p_0) \mapsto c^* & \text{speed of sound} \end{cases}$$

A Low Mach model for a heat exchanger

Governing equationsBoundary Conditions

• Equation(s) of State

Boundary conditions

A Low Mach model for a heat exchanger

Governing equations
Boundary Conditions
Equation(s) of State

Diphasic EOS

- Liquid κ = ℓ and vapour κ = g are characterized by their thermodynamic properties: (h, p₀) → ρ_κ
- In the mixture, full equilibrium between liquid and vapour phases: $T = T^s(p_0)$ and we define values at saturation:

 $h_{\kappa}^{s}(p_{0}) \stackrel{\text{\tiny def}}{=} h_{\kappa}(p_{0}, T^{s}(p_{0})), \qquad \varrho_{\kappa}^{s}(p_{0}) \stackrel{\text{\tiny def}}{=} \varrho_{\kappa}(p_{0}, T^{s}(p_{0})) = \varrho_{\kappa}(h_{\kappa}^{s}, p_{0}).$

$$\varrho(h, p_0) = \begin{cases} \varrho_{\ell}(h, p_0), & \text{if } h \le h_{\ell}^{s}(p_0), \\ \varrho_{m}(h, p_0) & \text{if } h_{\ell}^{s}(p_0) < h < h_{g}^{s}(p_0), \\ \varrho_{g}(h, p_0), & \text{if } h \ge h_{g}^{s}(p_0), \end{cases}$$

Mixture EoS

∜

$$\begin{cases} \varrho = \alpha \varrho_g^s(p_0) + (1 - \alpha) \varrho_\ell^s(p_0) \\ \varrho h = \alpha \varrho_g^s(p_0) h_g^s(p_0) + (1 - \alpha) \varrho_\ell^s(p_0) h_\ell^s(p_0) \end{cases}$$

for $h \in [h_{\ell}^{s}(p_{0}); h_{g}^{s}(p_{0})]$

$\varrho_m(h,p_0)=\frac{p_0/\beta_m(p_0)}{h-q_m(p_0)}$

where

$$\beta_m(p_0) \stackrel{\text{def}}{=} p_0 \frac{\frac{1}{\varrho_g^s} - \frac{1}{\varrho_\ell^s}}{h_g^s - h_\ell^s} = -\frac{p_0}{\varrho_m(h, p_0)} \left. \frac{\partial \varrho_m}{\partial h} \right|_{p_0} \qquad q_m(p_0) \stackrel{\text{def}}{=} \frac{\varrho_g^s h_g^s - \varrho_\ell^s h_\ell^s}{\varrho_g^s - \varrho_\ell^s}$$

1. Context 2. LM Hyp **3. Model** 4. 1D 5. Schemes 6. C&P **1. PDE 2. BC 3.3. EoS**

Pure phase EoS: Noble Able Stiffened Gas law

$$\frac{1}{\varrho_{\kappa}}(h,p_{0}) = \frac{\gamma_{\kappa}-1}{\gamma_{\kappa}}\frac{h-q_{\kappa}}{p_{0}+\pi_{\kappa}} + b_{\kappa}$$

- $\gamma_{\kappa} > 1$ adiabatic coefficient
- π_{κ} reference pressure
- q_{κ} binding energy
- *b*_κ covolume

$$(p_0) = -\frac{p_0}{\varrho_{\kappa}^2(h, p_0)} \left. \frac{\partial \varrho}{\partial h} \right|_{p_0} = \frac{\gamma_{\kappa} - 1}{\gamma_{\kappa}} \frac{p_0}{p_0 + \pi_{\kappa}} \quad \text{independent on } h$$

$$\downarrow$$

$$\varrho_{\kappa}(h, p_0) = \frac{p_0 / \beta_{\kappa}(p_0)}{h - \hat{q}_{\kappa}(p_0)}, \quad \hat{q}_{\kappa}(p_0) \stackrel{\text{def}}{=} q_{\kappa} - \frac{p_0}{\beta_{\kappa}(p_0)} b_{\kappa}$$

1. Context 2. LM Hyp 3. Model 4. 1D 5. Schemes 6. C&P 1. PDE 2. BC 3.3. EoS

Pure phase EoS: Noble Able Stiffened Gas law

$$\frac{1}{\varrho_{\kappa}}(h,p_{0}) = \frac{\gamma_{\kappa}-1}{\gamma_{\kappa}}\frac{h-q_{\kappa}}{p_{0}+\pi_{\kappa}} + b_{\kappa}$$

- $\gamma_{\kappa} > 1$ adiabatic coefficient
- π_{κ} reference pressure
- q_{κ} binding energy
- *b*_κ covolume

$$\beta_{\kappa}(p_{0}) = -\frac{p_{0}}{\varrho_{\kappa}^{2}(h,p_{0})} \left. \frac{\partial \varrho}{\partial h} \right|_{p_{0}} = \frac{\gamma_{\kappa} - 1}{\gamma_{\kappa}} \frac{p_{0}}{p_{0} + \pi_{\kappa}} \quad \text{independent on } h$$

$$\downarrow$$

$$\varrho_{\kappa}(h,p_{0}) = \frac{p_{0}/\beta_{\kappa}(p_{0})}{h - \hat{q}_{\kappa}(p_{0})}, \quad \hat{q}_{\kappa}(p_{0}) \stackrel{\text{def}}{=} q_{\kappa} - \frac{p_{0}}{\beta_{\kappa}(p_{0})} b_{\kappa}$$

1. Context 2. LM Hyp **3. Model** 4. 1D 5. Schemes 6. C&P **1. PDE 2. BC 3.3. EoS**

Pure phase EoS: Noble Able Stiffened Gas law

$$\frac{1}{\varrho_{\kappa}}(h,p_{0}) = \frac{\gamma_{\kappa}-1}{\gamma_{\kappa}}\frac{h-q_{\kappa}}{p_{0}+\pi_{\kappa}} + b_{\kappa}$$

- $\gamma_{\kappa} > 1$ adiabatic coefficient
- π_{κ} reference pressure
- q_{κ} binding energy
- *b*_κ covolume

$$\beta_{\kappa}(p_{0}) = -\frac{p_{0}}{\varrho_{\kappa}^{2}(h,p_{0})} \left. \frac{\partial \varrho}{\partial h} \right|_{p_{0}} = \frac{\gamma_{\kappa}-1}{\gamma_{\kappa}} \frac{p_{0}}{p_{0}+\pi_{\kappa}} \quad \text{independent on } h$$

$$\downarrow$$

$$\varrho_{\kappa}(h,p_{0}) = \frac{p_{0}/\beta_{\kappa}(p_{0})}{h-\hat{q}_{\kappa}(p_{0})}, \qquad \hat{q}_{\kappa}(p_{0}) \stackrel{\text{def}}{=} q_{\kappa} - \frac{p_{0}}{\beta_{\kappa}(p_{0})} b_{\kappa}$$

Diphasic Noble Able Stiffened Gas EOS

$$\varrho(h,p_0) = \frac{p_0/\beta(h,p_0)}{h-\hat{q}(h,p_0)}$$

where

$$\begin{split} \hat{q}_{\kappa}(p_{0}) &\stackrel{\text{def}}{=} q_{\kappa} - \frac{p_{0}}{\beta_{\kappa}(p_{0})} b_{\kappa} \\ [\beta, q, b](h, p_{0}) &= \begin{cases} [\beta, q, b]_{\ell}, & \text{if } h \leq h_{\ell}^{s}(p_{0}), \\ [\beta, q, 0]_{m} & \text{if } h_{\ell}^{s}(p_{0}) < h < h_{g}^{s}(p_{0}), \\ [\beta, q, b]_{g}, & \text{if } h \geq h_{g}^{s}(p_{0}), \end{cases} \end{split}$$

Theoretical results: 1D-model

- Steady state solution
- Analytical solutions with NASG

1. Context 2. LM Hyp 3. Model 4. 1D 5. Schemes 6. C&P 1. Steady State 2. Exact

The LMNC model

$$p_0(t) = 155 \text{ bar } \forall t$$

 $\lambda = 0 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$

1D

$$\begin{cases} \partial_{y}v = \frac{\beta(h)}{p_{0}}\Phi\\ \partial_{t}h + v\partial_{y}h = \frac{\Phi}{\varrho(h)}\\ \partial_{t}(\varrho(h)v) + \partial_{y}(\varrho v^{2} + \bar{p}) - \partial_{y}(\mu\partial_{y}v) = -g\varrho(h) \end{cases}$$

Theoretical results: 1D-model

• Steady state solution

• Analytical solutions with NASG

Steady state solution

$$(h_e^{\infty}, D_e^{\infty} > 0, \Phi^{\infty}(y)) \stackrel{\text{def}}{=} \lim_{t \to +\infty} (h_e(t), D_e(t), \Phi(t, y))$$

Enthalpy

Using $\partial_y(\varrho^{\infty}v^{\infty}) = 0$ we have $\partial_y h^{\infty} = \frac{\Phi^{\infty}}{D_e^{\infty}}$.

$$h^{\infty}(y) = h_e^{\infty} + \frac{\Psi(y)}{D_e^{\infty}}, \qquad \Psi(y) \stackrel{\text{def}}{=} \int_0^y \Phi^{\infty}(z) \, \mathrm{d}z$$

2 Velocity

$$v^{\infty}(y) = rac{D_e^{\infty}}{\varrho(h^{\infty}(y))}$$

3 Dynamic pressure Direct integration of $\partial_y \bar{p} = \partial_y (\mu \partial_y v) - \partial_y (\varrho v^2) - \varrho g$.

Theoretical results: 1D-model

• Steady state solution

• Analytical solutions with NASG

- ► Velocity
- ► Enthalpy

▼ Velocity

Direct integration of $\partial_y v = \frac{\overline{\beta}}{\rho_0} \Phi$.

$$v(t,y) = v_e(t) + rac{areta}{p_0} \Psi(t,y), \qquad \Psi(t,y) \stackrel{ ext{def}}{=} \int_0^y \Phi(t,z) \, \mathrm{d}z$$

Enthalpy

Velocity

▼ Enthalpy

Method of characteristics on $\partial_t h + v \partial_y h = \frac{\Phi}{\varrho(h)} = \Phi \left[\frac{\bar{\beta}}{\rho_0} (h - \hat{q}) \right].$

Velocity

Enthalpy

Method of characteristics on $\partial_t h + v \partial_y h = \frac{\Phi}{\varrho(h)} = \Phi\left[\frac{\bar{\beta}}{\rho_0}(h-\hat{q})\right].$ Example: if Φ and v_e are constant, let $\hat{\Phi} \stackrel{\text{def}}{=} \frac{\bar{\beta}\Phi}{\rho_0}$ then

$$h(t,y) = \begin{cases} \hat{q} + (h_{\text{init}}(\xi_{t,y}) - \hat{q}) e^{\hat{\Phi}t} & \text{if } \xi_{t,y} \ge 0, \\ h_e(t^*_{t,y}) + \frac{\Phi}{D_e(t^*_{t,y})}y & \text{if } \xi_{t,y} < 0. \end{cases}$$

1. Context 2. LM Hyp 3. Model 4. 1D 5. Schemes 6. C&P 1. Steady State 4.2. Exact

NASG two phases with phase transition

 Φ , v_e , h_e , h_0 : constant; IC and BC: liquid phase.

$$\begin{split} y_{\ell}^{s} &= \frac{D_{e}}{\Phi} (h_{\ell}^{s} - h_{e}) \\ y_{g}^{s} &= \frac{D_{e}}{\Phi} (h_{g}^{s} - h_{e}) \\ t_{\ell}^{s} &= \frac{1}{\hat{\Phi}_{\ell}} \ln \left(\frac{h_{\ell}^{s} - \hat{q}_{\ell}}{h_{0} - \hat{q}_{\ell}} \right) \\ t_{g}^{s} &= t_{\ell}^{s} + \frac{1}{\hat{\Phi}_{m}} \ln \left(\frac{h_{g}^{s} - \hat{q}_{m}}{h_{\ell}^{s} - \hat{q}_{m}} \right) \end{split}$$

- Velocity
- Enthalpy

NASG two phases with phase transition

 Φ , v_e , h_e , h_0 : constant; IC and BC: liquid phase.

Velocity: direct integration of $\partial_y v = \frac{\beta(h)}{p_0} \Phi$.

$$v(t,y) = \begin{cases} \mathbf{v}_{e} + \mathbf{y} \hat{\Phi}_{\ell} & \text{if } (t,y) \in \mathcal{L}, \\ \mathbf{v}_{e} + y_{\ell}^{s} \hat{\Phi}_{\ell} + (y - y_{\ell}^{s}) \hat{\Phi}_{m} & \text{if } (t,y) \in \mathcal{M}, \\ \mathbf{v}_{e} + \mathbf{y}_{\ell}^{s} \hat{\Phi}_{\ell} + (\mathbf{y}_{g}^{s} - \mathbf{y}_{\ell}^{s}) \hat{\Phi}_{m} + (y - \mathbf{y}_{g}^{s}) \hat{\Phi}_{g} & \text{if } (t,y) \in \mathcal{G}, \end{cases}$$

NASG two phases with phase transition

 Φ , v_e , h_e , h_0 : constant; IC and BC: liquid phase.

- Velocity
- **V** Enthalpy: method of characteristics on $\partial_t h + v \partial_y h = \frac{\beta(h)\Phi}{P_0}(h \hat{q}(h))$.

$$h(t,y) = \begin{cases} q_{\ell} + (h_0 - \hat{q}_{\ell})e^{\hat{\Phi}_{\ell}t} & \text{if } (t,y) \in \mathcal{L} \text{ and } t < t_{\ell}(y), \\ q_m + (h_{\ell}^s - \hat{q}_m)e^{\hat{\Phi}_m(t-t_{\ell}^s)} & \text{if } (t,y) \in \mathcal{M} \text{ and } t < t_m(y), \\ q_g + (h_g^s - \hat{q}_g)e^{\hat{\Phi}_g(t-t_g^s)} & \text{if } (t,y) \in \mathcal{G} \text{ and } t < t_g(y), \\ h_e + \frac{\Phi}{D_e}y & \text{otherwise.} \end{cases}$$

Section 5

Numerical schemes

1D Numerical schemes2D Numerical scheme3D Numerical scheme

Section 5

Numerical schemes

• 1D Numerical schemes

2D Numerical scheme 3D Numerical scheme

► Velocity

Enthalpy - key idea:

$$\partial_t h(t^{n+1}, y_i) + v(t^{n+1}, y_i) \partial_y h(t^{n+1}, y_i) = \frac{\Phi(t^{n+1}, y_i)}{\varrho(h(t^{n+1}, y_i))}$$

$$\begin{cases} \\ \vdots \\ \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \tilde{h}_i^{n+1}(\tau) &= \frac{\Phi(\tau, \chi(\tau; t^{n+1}; y_i))}{\varrho(\tilde{h}_i^{n+1}(\tau))} \end{cases}$$

where $\overline{t} \in [t^n; t^{n+1}[, \tau \mapsto \tilde{h}_i^{n+1}(\tau) \stackrel{\text{def}}{=} h(\tau, \chi(\tau; t^{n+1}, y_i))$ and χ is the characteristic flow defined as the solution of

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}\tau}\chi(\tau;t^{n+1},y_i) = v\left(\tau,\chi(\tau;t^{n+1},y_i)\right), & \tau \leq t^{n+1}, \\ \chi(t^{n+1};t^{n+1},y_i) = y_i. \end{cases}$$

Enthalpy - key idea:

where $\overline{t} \in [t^n; t^{n+1}[, \tau \mapsto \tilde{h}_i^{n+1}(\tau) \stackrel{\text{def}}{=} h(\tau, \chi(\tau; t^{n+1}, y_i))$ and χ is the characteristic flow defined as the solution of

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}\tau}\chi(\tau;t^{n+1},y_i) = v\left(\tau,\chi(\tau;t^{n+1},y_i)\right), & \tau \leq t^{n+1}, \\ \chi(t^{n+1};t^{n+1},y_i) = y_i. \end{cases}$$

- **V** Enthalpy scheme: let $\xi_i^n \approx \chi(t^n; t^{n+1}, y_i)$.
- If $\xi_i^n > 0$, let $\hat{h}_i^n \approx \tilde{h}_i^{n+1}(t^n)$ (at order 1 or higher) and then $\bar{t} = t^n$ and

$$h_i^{n+1} = \hat{h}_i^n + \Delta t \frac{\Phi(t^n, \xi_i^n)}{\varrho(\hat{h}_i^n)}$$

• If $\xi_i^n \leq 0$, let $t_i^* = t^{n+1} - y_i/v_i^n \approx \tau$ such that $\chi(\tau; t^{n+1}, y_i) = 0$ and then $\overline{t} = t_i^*$ and

$$h_i^{n+1} = h_e(t_i^*) + (t^{n+1} - t_i^*) \frac{\Phi(t^*, 0)}{\varrho(h_e(t_i^*))}$$

Enthalpy

Velocity : $\partial_y v = \frac{\beta(h)\Phi}{p_0}$

$$egin{aligned} & \chi_i^{n+1} = v_{i-1}^{n+1} + rac{1}{p_0} \int_{y_{i-1}}^{y_i} eta(h(t^{n+1},z)) \Phi(t^{n+1},z) \, \mathrm{d}z \ & pprox v_{i-1}^{n+1} + rac{\Delta y}{p_0} eta(h_{i-1}^{n+1}) \Phi(t^{n+1},y_{i-1}). \end{aligned}$$

 β is discontinuous at phase change points, so that if $h_{\kappa}^{s} \in (h_{i-1}^{n+1}, h_{i}^{n+1})$, let $y^{*} = y_{i-1} + \Delta y \frac{h_{\kappa}^{s} - h_{i-1}^{n+1}}{h_{\kappa}^{n+1} - h_{\kappa}^{n+1}}$ and then

$$\begin{split} &\int_{y_{i-1}}^{y_i} \beta(h(t^{n+1},z)) \Phi(t^{n+1},z) \, \mathrm{d}z \\ &\approx (y^* - y_{i-1}) \beta(h_{i-1}^{n+1}) \Phi(t^{n+1},y_{i-1}) \, \mathrm{d}y + (y_i - y^*) \beta(h_i^{n+1}) \Phi(t^{n+1},y_i) \, \mathrm{d}y \end{split}$$

INTMOC-scheme (NASG)

Enthalpy - key idea:

$$\frac{\frac{\mathrm{d}}{\mathrm{d}\tau}\tilde{h}_{i}^{n+1}(\tau)}{\beta(\tilde{h}_{i}^{n+1}(\tau))\left(\tilde{h}_{i}^{n+1}(\tau)-\hat{q}(\tilde{h}_{i}^{n+1}(\tau))\right)} = \frac{\Phi(\tau,\chi(\tau;t^{n+1},y_{i}))}{p_{0}}$$

$$\int_{\tilde{h}_{i}^{n+1}(\bar{t})}^{\tilde{h}_{i}^{n+1}(t^{n+1})} \frac{1}{\beta(h)(h-\hat{q}(h))} dh = \frac{1}{p_{0}} \int_{\bar{t}}^{t^{n+1}} \Phi(\tau, \chi(\tau; t^{n+1}, y_{i})) d\tau$$

so that

$$\tilde{h}_{i}^{n+1}(t^{n+1}) = R^{-1} \left(R(\tilde{h}_{i}^{n+1}(\bar{t})) + \frac{1}{p_{0}} \int_{\bar{t}}^{t^{n+1}} \Phi(\tau, \chi(\tau; t^{n+1}, y_{i})) d\tau \right)$$

where

$$R(h) \stackrel{\text{def}}{=} \int_0^{\tilde{h}} \frac{1}{\beta(h)(h - \hat{q}(h))} dh$$

INTMOC-scheme (NASG)

▼ Enthalpy - scheme: let $\xi_i^n \approx \chi(t^n; t^{n+1}, y_i)$. • If $\xi_i^n > 0$, let $\hat{h}_i^n \approx \tilde{h}_i^{n+1}(t^n)$ (at order 1 or 2) and then $\bar{t} = t^n$ and

$$h_i^{n+1} = R^{-1} \left(R(\hat{h}_i^n) + \frac{\Delta t}{p_0} \frac{\Phi(t^n, \xi_i^n) + \Phi(t^{n+1}, y_j)}{2} \right)$$

• If $\xi_i^n \leq 0$, let $t_i^* = t^{n+1} - y_i/v_i^n \approx \tau$ such that $\chi(\tau; t^{n+1}, y_i) = 0$ and then $\overline{t} = t_i^*$ and

SG: MOC (order 1 or 2) vs INTMOC (order 1 or 2)

- Initially the domain is filled with liquid phase
- At $t = 1.769 \,\mathrm{s}$ mixture appears for $y > y_{\ell}^{s} \simeq 0.964 \,\mathrm{m}$
- At $t = 2.929 \,\mathrm{s}$ pure vapor phase appears for $y > y_g^s \simeq 4.002 \,\mathrm{m}$
- The asymptotic state is reached at $t = 2.957 \,\mathrm{s}$

SG: MOC (order 1 or 2) vs INTMOC (order 1 or 2)

• Initially the domain is filled with liquid phase

- At $t = 1.769 \,\mathrm{s}$ mixture appears for $y > y_{\ell}^{s} \simeq 0.964 \,\mathrm{m}$
- At $t = 2.929 \,\mathrm{s}$ pure vapor phase appears for $y > y_g^s \simeq 4.002 \,\mathrm{m}$
- The asymptotic state is reached at t = 2.957 s

SG (INTMOC 2) vs TAB (MOC 2)

SG (INTMOC 2) vs TAB (MOC 2)

SG (INTMOC 2) vs TAB (MOC 2)

Loss of Flow Accident

$$v_e(t) = egin{cases} ilde{v} & ext{if } 0 \leq t < t_1, \ 2\% ilde{v} & ext{if } t_1 \leq t < t_3, \ ilde{v} & ext{if } t \geq t_3, \end{cases}$$

$$\Phi(t) = egin{cases} \Phi_0 & ext{if } 0 \leq t < t_2, \ 7\% \Phi_0 & ext{if } t \geq t_2. \end{cases}$$

Coolant pump trip event

- pumps are stopped when $t = t_1$
- and re-started when $t = t_3$

Emergency stop

Control rods drop into the core when $t = t_2$

Loss of Flow Accident

Loss of Flow Accident

At t_1 most of the pumps stop $\implies v_e(t) \searrow$.

Mass fraction

Temperature

Loss of Flow Accident

At t_1 most of the pumps stop $\implies v_e(t) \searrow$.

Mass fraction

Temperature

Loss of Flow Accident

At t_1 most of the pumps stop $\implies v_e(t) \searrow$.

Loss of Flow Accident

Loss of Flow Accident

At t_2 the security system drops control rods into the core $\implies \Phi(t) \searrow 7\% \Phi_0$.

Mass fraction

Temperature

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

Loss of Flow Accident

At t_3 the security pumps are turned on $\implies v_e(t) \nearrow$ and the fluid comes back to the liquid phase.

Loss of Flow Accident

At t_3 the security pumps are turned on $\implies v_e(t) \nearrow$ and the fluid comes back to the liquid phase.

Loss of Flow Accident

At t_3 the security pumps are turned on $\implies v_e(t) \nearrow$ and the fluid comes back to the liquid phase.

Loss of Flow Accident

At t_3 the security pumps are turned on $\implies v_e(t) \nearrow$ and the fluid comes back to the liquid phase.

Mass fraction

Temperature

Loss of Flow Accident

At t_3 the security pumps are turned on $\implies v_e(t) \nearrow$ and the fluid comes back to the liquid phase.

Loss of Flow Accident

At t_3 the security pumps are turned on $\implies v_e(t) \nearrow$ and the fluid comes back to the liquid phase.

Loss of Flow Accident

At t_3 the security pumps are turned on $\implies v_e(t) \nearrow$ and the fluid comes back to the liquid phase.

Loss of Flow Accident

At t_3 the security pumps are turned on $\implies v_e(t) \nearrow$ and the fluid comes back to the liquid phase.

Section 5

Numerical schemes

1D Numerical schemes
2D Numerical scheme
3D Numerical scheme

FreeFem++(1)

 Let ξⁿ the foot at time tⁿ of the characteristic issuing from x at time tⁿ⁺¹, then the convective part of the system can be approximated by

$$[\partial_t \star + (\mathbf{u} \cdot \nabla) \star](t^{n+1}, \mathbf{x}) \approx \frac{\star (t^{n+1}, \mathbf{x}) - \star (t^n, \boldsymbol{\xi}^n)}{\Delta t}, \qquad \star = \mathbf{u} \text{ or } h$$

• Weak formulation of a semi-implicit temporal discretization: at time t^{n+1} find $(\mathbf{u}^{n+1}, \bar{p}^{n+1}, h^{n+1}) \in (\mathbf{u}_e + \mathcal{U}) \times \mathcal{P} \times (h_e + \mathcal{H})$ defined by

•
$$\mathcal{U} = \left\{ \mathbf{v} \in (H^1(\Omega))^2 | \mathbf{v}(x,0) = \mathbf{0}, \mathbf{v} \cdot \mathbf{n}(0,y) = \mathbf{v} \cdot \mathbf{n}(L_x,y) = 0 \right\}$$

- $\mathcal{P} = L_0^2(\Omega) = \left\{ q \in L^2(\Omega) | \int_\Omega q(\mathbf{x}) \, \mathrm{d} \mathbf{x} = 0 \right\}$
- $\mathcal{H} = \left\{ k \in H^1(\Omega) | k(x,0) = 0 \right\}$

such that ...

FreeFem++(2)

•
$$\forall \mathbf{u}_{\text{test}} \in \mathcal{U}$$

$$\frac{1}{\Delta t} \int_{\Omega} \varrho(h^{n})(\mathbf{u}^{n+1} - \mathbf{u}^{n}(\boldsymbol{\xi}^{n})) \cdot \mathbf{u}_{\text{test}} \, \mathrm{d}\mathbf{x}$$

$$+ \int_{\Omega} \mu(h^{n})((\nabla \mathbf{u}^{n+1} + (\nabla \mathbf{u}^{n+1})^{T}): \nabla(\mathbf{u}_{\text{test}})) \, \mathrm{d}\mathbf{x}$$

$$+ \int_{\Omega} \eta(h^{n}) \, \mathrm{div}(\mathbf{u}^{n+1}) \, \mathrm{div}(\mathbf{u}_{\text{test}}) \, \mathrm{d}\mathbf{x} - \int_{\Omega} \bar{\rho}^{n+1} \, \mathrm{div}(\mathbf{u}_{\text{test}}) \, \mathrm{d}\mathbf{x}$$

$$= \int_{\Omega} \varrho(h^{n}) \mathbf{g} \cdot \mathbf{u}_{\text{test}} \, \mathrm{d}\mathbf{x}$$

$$\bullet \, \forall \rho_{\text{test}} \in \mathcal{P}$$

$$\int_{\Omega} \, \mathrm{div}(\mathbf{u}^{n+1}) \rho_{\text{test}} \, \mathrm{d}\mathbf{x} = \frac{1}{\rho_{0}} \int_{\Omega} \beta(h^{n}) \Phi(t^{n+1}) \rho_{\text{test}} \, \mathrm{d}\mathbf{x}$$

•
$$\forall h_{\text{test}} \in \mathcal{H}$$

$$\frac{1}{\Delta t} \int_{\Omega} (h^{n+1} - h^n(\boldsymbol{\xi}^n)) h_{\text{test}} \, \mathrm{d} \mathbf{x} = \int_{\Omega} \frac{\Phi(t^{n+1})}{\varrho(h^n)} h_{\text{test}} \, \mathrm{d} \mathbf{x}$$

A 2D test

Enthalpy at time 0.59 s

Section 5

Numerical schemes

1D Numerical schemes2D Numerical scheme

• 3D Numerical scheme

3D-scheme (in collaboration with C. Galusinski)

Time discretization:

- order 2, semi-implicit (convective part explicitly treated)
- pressure-correction method:
 - first substep: \bar{p} treated explicitly (\rightsquigarrow u)
 - second substep: p
 corrected by projecting the intermediate velocity onto the space of "divergence-fixed" field

Space discretization: MAC grid

Miscellanea: OpenMP, big ratio of density

1. Context 2. LM Hyp 3. Model 4. 1D 5. Schemes 6. C&P 1. 1D 2. 2D 5.3. 3D

A 3D test

1. Context 2. LM Hyp 3. Model 4. 1D 5. Schemes 6. C&P 1. 1D 2. 2D 5.3. 3D

A 3D test

1. Context 2. LM Hyp 3. Model 4. 1D 5. Schemes 6. C&P 1. 1D 2. 2D 5.3. 3D

A 3D test

Section 6

Conclusion & Perspectives

Model

- ✓ mono/diphasic low Mach model with phase transition (Noble Able Stiffened Gas & Tabulated EoS),
- $\checkmark t \mapsto p_0(t)$,
- Heat diffusion,

Theoretical study (1D)

✓ unsteady exact solutions on some cases (NASG with phase transition), steady exact solutions (also with tabulated EOS),

Numerical Method

✓ preliminary results:

- 1D (MOC, unconditionally positive)
- 2D (MOC+FE)
- 3D (FV with projection)

Model

- ✓ mono/diphasic low Mach model with phase transition (Noble Able Stiffened Gas & Tabulated EoS),
- ✓ $t \mapsto p_0(t)$,
- Heat diffusion,

- Theoretical study (1D)
 - ✓ unsteady exact solutions on some cases (NASG with phase transition), steady exact solutions (also with tabulated EOS),

Numerical Method

✓ preliminary results:

- 1D (MOC, unconditionally positive)
- 2D (MOC+FE)
- 3D (FV with projection)

- Model
 - ✓ mono/diphasic low Mach model with phase transition (Noble Able Stiffened Gas & Tabulated EoS),
 - ✓ $t \mapsto p_0(t)$,
 - Heat diffusion,

- Theoretical study (1D)
 - ✓ unsteady exact solutions on some cases (NASG with phase transition), steady exact solutions (also with tabulated EOS),
- Numerical Method
 - ✓ preliminary results: 1D (MOC, unconditionally positive) 2D (MOC+FE) 3D (FV with projection)

Model

- ✓ mono/diphasic low Mach model with phase transition (Noble Able Stiffened Gas & Tabulated EoS),
- $\checkmark t\mapsto p_0(t),$
- Heat diffusion,
- X Hierarchy of Low Mach models
- X Coupling with a neutronics model
- ✗ EoS for MSFR
- Theoretical study (1D)
 - ✓ unsteady exact solutions on some cases (NASG with phase transition), steady exact solutions (also with tabulated EOS),
 - x steady exact solution with a neutronics model
- Numerical Method
 - preliminary results:
 - 1D (MOC, unconditionally positive)
 - 2D (MOC+FE)
 - 3D (FV with projection)

References

- Compressible Navier-Stokes system
- Computing saturation values from two pure phase laws
- \triangleright $p \rightarrow T^s$
- NIST vs SG
- Tabulated laws
- mocdetails

References

S. Dellacherie.

On a low Mach nuclear core model. ESAIM Proc., 35:79–106, 2012.

M. Bernard, S. Dellacherie, G. Faccanoni, B. Grec, O. Lafitte, T.-T. Nguyen and Y. Penel. Study of low Mach nuclear core model for single-phase flow.

Study of low Mach nuclear core model for single-phase flow. ESAIM Proc., 38:118–134, 2012.

M. Bernard, S. Dellacherie, G. Faccanoni, B. Grec and Y. Penel. Study of low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law. M2AN,

 S. Dellacherie, G. Faccanoni, B. Grec, E. Nayir and Y. Penel.
 2D numerical simulation of a low Mach nuclear core model with stiffened gas using FreeFem++
 ESAIM Proc.,

S. Dellacherie, G. Faccanoni, B. Grec and Y. Penel. Study of a low Mach model for two-phase flows with phase transition II: tabulated laws. Submitted.

A. Bondesan, S. Dellacherie, H. Hivert, J. Jung, V. Lleras, C. Mietka and Y. Penel. Study of a depressurisation process at low mach number in a nuclear reactor core. Submitted.

Compressible Navier-Stokes system

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = \mathbf{0} \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) = -\nabla \rho + \operatorname{div}(\sigma(\mathbf{u})) + \varrho \mathbf{g} \\ \partial_t(\varrho h) + \operatorname{div}(\varrho h \mathbf{u}) = \partial_t \rho + \mathbf{u} \cdot \nabla \rho + \sigma(\mathbf{u}) \colon \nabla \mathbf{u} + \Phi \end{cases}$$

where

$$\sigma(\mathbf{u}) \stackrel{\text{\tiny def}}{=} \nu \big(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \big) + \eta \nabla \mathbf{u}$$

- Unknowns
- ► Given quantities
- ► Equation Of State

Compressible Navier-Stokes system

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = \mathbf{0} \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) = -\nabla \boldsymbol{p} + \operatorname{div}(\sigma(\mathbf{u})) + \varrho \mathbf{g} \\ \partial_t(\varrho \boldsymbol{h}) + \operatorname{div}(\varrho \boldsymbol{h} \mathbf{u}) = \partial_t \boldsymbol{p} + \mathbf{u} \cdot \nabla \boldsymbol{p} + \sigma(\mathbf{u}) \colon \nabla \mathbf{u} + \boldsymbol{\Phi} \end{cases}$$

where

$$\sigma(\mathbf{u}) \stackrel{\text{\tiny def}}{=} \nu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) + \eta \nabla \mathbf{u}$$

V Unknowns

- $(t, \mathbf{x}) \mapsto \mathbf{u}$ velocity,
- $(t, \mathsf{x}) \mapsto h$ enthalpy,
- $(t, \mathbf{x}) \mapsto p$ pressure;
- Given quantities
- Equation Of State

Compressible Navier-Stokes system

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = \mathbf{0} \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) = -\nabla \rho + \operatorname{div}(\sigma(\mathbf{u})) + \varrho \mathbf{g} \\ \partial_t(\varrho h) + \operatorname{div}(\varrho h \mathbf{u}) = \partial_t \rho + \mathbf{u} \cdot \nabla \rho + \sigma(\mathbf{u}) \colon \nabla \mathbf{u} + \mathbf{\Phi} \end{cases}$$

where

$$\sigma(\mathbf{u}) \stackrel{\text{\tiny def}}{=} \nu (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) + \eta \nabla \mathbf{u}$$

- Unknowns
- **V** Given quantities
 - $(t, \mathbf{x}) \mapsto \Phi \geq 0$ power density,
 - g gravity;
- ► Equation Of State

Compressible Navier-Stokes system

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0\\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) = -\nabla \rho + \operatorname{div}(\sigma(\mathbf{u})) + \varrho \mathbf{g}\\ \partial_t(\varrho h) + \operatorname{div}(\varrho h \mathbf{u}) = \partial_t \rho + \mathbf{u} \cdot \nabla \rho + \sigma(\mathbf{u}) \colon \nabla \mathbf{u} + \Phi \end{cases}$$

where

$$\sigma(\mathbf{u}) \stackrel{\text{\tiny def}}{=} \nu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) + \eta \nabla \mathbf{u}$$

- Unknowns
- ► Given quantities
- ▼ Equation Of State
 - $(h, p) \mapsto \nu, \eta$ such that $2\mu + 3\eta > 0$,
 - $(h, p) \mapsto \varrho$ density.

Saturation values

• Liquid $\kappa = \ell$ and vapor $\kappa = g$ are characterized by their EoS

$$(h,p)\mapsto arrho_\kappa=rac{\gamma_\kappa}{\gamma_\kappa-1}rac{p+\pi_\kappa}{h-q_\kappa}$$

(see Le Metayer and Saurel for parameters of liquid water and steam)

 Second principle of thermodynamics: when phases coexist, they have the same pressures, the same temperatures and their chemical potentials are equal:

$$g_{\ell}(p,T) = g_g(p,T) \qquad \Longrightarrow \qquad T = T^s(p).$$

• We define saturation values at $p = p_0$:

$$h_{\kappa}^{s} \stackrel{\text{\tiny def}}{=} h_{\kappa}(p_{0}, T^{s}(p_{0})), \qquad \varrho_{\kappa}^{s} \stackrel{\text{\tiny def}}{=} \varrho_{\kappa}(h_{\kappa}^{s}, p_{0}).$$

Saturation values

• Liquid $\kappa = \ell$ and vapor $\kappa = g$ are characterized by their EoS

$$(h,p)\mapsto arrho_\kappa=rac{\gamma_\kappa}{\gamma_\kappa-1}rac{p+\pi_\kappa}{h-q_\kappa}$$

(see Le Metayer and Saurel for parameters of liquid water and steam)

 Second principle of thermodynamics: when phases coexist, they have the same pressures, the same temperatures and their chemical potentials are equal:

$$g_{\ell}(p,T) = g_g(p,T) \implies T = T^s(p).$$

• We define saturation values at $p = p_0$:

$$h_{\kappa}^{s} \stackrel{\text{\tiny def}}{=} h_{\kappa}(p_{0}, T^{s}(p_{0})), \qquad \varrho_{\kappa}^{s} \stackrel{\text{\tiny def}}{=} \varrho_{\kappa}(h_{\kappa}^{s}, p_{0}).$$

Saturation values

• Liquid $\kappa = \ell$ and vapor $\kappa = g$ are characterized by their EoS

$$(h,p)\mapsto arrho_\kappa=rac{\gamma_\kappa}{\gamma_\kappa-1}rac{p+\pi_\kappa}{h-q_\kappa}$$

(see Le Metayer and Saurel for parameters of liquid water and steam)

 Second principle of thermodynamics: when phases coexist, they have the same pressures, the same temperatures and their chemical potentials are equal:

$$g_{\ell}(p,T) = g_g(p,T) \implies T = T^s(p).$$

• We define saturation values at $p = p_0$:

$$h_{\kappa}^{s} \stackrel{\text{\tiny def}}{=} h_{\kappa}(p_{0}, T^{s}(p_{0})), \qquad \varrho_{\kappa}^{s} \stackrel{\text{\tiny def}}{=} \varrho_{\kappa}(h_{\kappa}^{s}, p_{0}).$$

$$p \mapsto T^s$$

NIST vs SG

	NIST	SG		
Ts	617 K	654 K		
hℓ hgs	$\begin{array}{c} 1.629 \times 10^{6} \: J \cdot K^{-1} \\ 2.596 \times 10^{6} \: J \cdot K^{-1} \end{array}$	$\begin{array}{c} 1.627 \times 10^{6} \ \text{J} \cdot \text{K}^{-1} \\ 3.004 \times 10^{6} \ \text{J} \cdot \text{K}^{-1} \end{array}$		
ϱ_ℓ^s ϱ_g^s	594.38 kg \cdot m ⁻³ 101.93 kg \cdot m ⁻³	$632.663 kg \cdot m^{-3}$ 52.937 kg $\cdot m^{-3}$		

NIST vs SG: $h \mapsto \varrho$

NIST vs SG: $h \mapsto T$

NIST vs SG: $h \mapsto \beta$

Compressibility coefficient

NIST vs SG: $h \mapsto c^*$

Pure phase EoS: Tabulated laws at $p = p_0$

κ	h [kJ/kg]	$\varrho_\kappa \; [\mathrm{kg}/\mathrm{m}^3]$	T_{κ} [K]	$c^*_{\kappa} \left[\mathbf{m} \cdot \mathbf{s}^{-1} \right]$	β_{κ}
l	15.608	1007.5	273.16	1427.4	X
ℓ	30.678	1007.5	276.79	1445.0	X
÷	:	:	-	:	÷
ℓ	1602.8	609.10	614.77	659.56	X
l	h_ℓ^s	594.38	T^{s}	621.43	×
g	h _g s	101.93	Ts	433.40	X
g	2602.6	101.06	618.41	435.61	X
÷	:	:	:	:	÷
g	2.5299	35.139	996.37	747.83	X
g	2.5290	34.985	1000.0	749.37	X

Source: http://webbook.nist.gov/chemistry/fluid/

Pure phase EoS: Tabulated laws at $p = p_0$

Liquid phase

• Discretization of the enthalpy interval $[1.56 \times 10^4; h_{\ell}^s]$:

$$h_i \simeq (1.56 + 1.68i) \times 10^4, \qquad i \in \Im = \{1, \dots, 96\}$$

- Approximation of $\beta_{\ell}(h_i) = -\frac{p_0}{\varrho_{\ell}^2(h_i)} \varrho_{\ell}'(h_i)$ by finite differences
- Least squares polynomial approximation over the set of discrete values $((\varrho_{\ell}, \beta_{\ell}, T_{\ell}, c_{\ell}^*)(h_i))_{i \in \mathfrak{I}}$:

$$\left(\varrho_{\ell},\beta_{\ell},T_{\ell},c_{\ell}^{*}\right)\left(rac{h}{10^{6}}
ight)=\sum_{j=0}^{N}\left(rac{h}{10^{6}}
ight)^{i}a_{j},\qquad N\leq 6$$

Pure phase EoS: Tabulated laws at $p = p_0$

Vapor phase

• Discretization of the enthalpy interval $[h_g^s; 25.29 \times 10^6]$:

$$h_i \simeq (2.596 + 0.0122i) imes 10^6, \qquad i \in \Im = \{1, \dots, 107\}$$

- Approximation of $\beta_g(h_i) = -\frac{p_0}{\varrho_g^2(h_i)}\varrho_g'(h_i)$ by finite differences
- Least squares polynomial approximation over the set of discrete values $((\varrho_g, \beta_g, T_g, c_g^*)(h_i))_{i \in \Im}$:

$$(\varrho_g, \beta_g, T_g, c_g^*)\left(rac{h}{10^6}
ight) = \sum_{j=0}^N \left(rac{h}{10^6}
ight)^j a_j, \qquad N \le 6$$

MOC scheme details

9 Foot of the characteristic ξⁿ_i ≈ χ(tⁿ; tⁿ⁺¹, y_i).
 a hⁿ_i ≈ h(tⁿ, ξⁿ_i) ≈ hⁿ⁺¹_i(tⁿ).

MOC scheme details

• Foot of the characteristic $\xi_i^n \approx \chi(t^n; t^{n+1}, y_i)$.

This approximation is computed either at order one or two:

9 at order one in time we have $\xi(t^n, y_i) \approx y_i - \Delta t \cdot v(t^n, y_i)$ so that we set

$$\xi_i^n = y_i - \Delta t \cdot v_i^n,$$

2 at order two in time we have

$$\xi(t^n, y_i) \approx y_i - \Delta t \cdot v(t^n, y_i) - \frac{1}{2} \Delta t^2 \left(\partial_t v(t^n, y_i) - \frac{\beta(h(t^n, y_i))}{p_0} v(t^n, y_i) \Phi(t^n, y_i) \right)$$

so that we set

$$\xi_{i}^{n} = y_{i} - \Delta t \left(\frac{3}{2} v_{i}^{n} - \frac{1}{2} v_{i}^{n-1} \right) + \frac{\Delta t^{2}}{2} \frac{\beta(h_{i}^{n})}{p_{0}} v_{i}^{n} \Phi(t^{n}, y_{i}).$$

 $\ \ \, @ \ \ \, \hat{h}^n_i \approx h(t^n,\xi^n_i) \approx \tilde{h}^{n+1}_i(t^n).$

MOC scheme details

9 Foot of the characteristic ξⁿ_i ≈ χ(tⁿ; tⁿ⁺¹, y_i).
 a hⁿ_i ≈ h(tⁿ, ξⁿ_i) ≈ hⁿ⁺¹_i(tⁿ).

MOC scheme details

• Foot of the characteristic $\xi_i^n \approx \chi(t^n; t^{n+1}, y_i)$. 2 $\hat{h}_i^n \approx h(t^n, \xi_i^n) \approx \tilde{h}_i^{n+1}(t^n).$ If $\xi_i^n > 0$, let j be the index such that $\xi_i^n \in [y_j, y_{j+1})$ and $\theta_{ii}^n \stackrel{\text{def}}{=} \frac{y_{j+1} - \xi_i^n}{\Lambda_x}$. • At order one $\hat{h}_i^n = \theta_{ii}^n h_i^n + (1 - \theta_{ii}^n) h_{i+1}^n$. **2** At order two $\hat{h}_i^n = \lambda_i^n h_i^- + (1 - \lambda_i^n) h_i^+$ where $\lambda_{j}^{n} \stackrel{\text{def}}{=} \begin{cases} \frac{1+\theta_{j}^{n}}{3}, & \text{if } \mathcal{P}_{j}^{+}(\theta_{j}^{n}) \geq 0 \text{ and } \mathcal{P}_{j}^{-}(\theta_{j}^{n}) \geq 0, \\ 0, & \text{if } \mathcal{P}_{j}^{+}(\theta_{j}^{n}) \geq 0 \text{ and } \mathcal{P}_{j}^{-}(\theta_{j}^{n}) < 0, \\ 1, & \text{if } \mathcal{P}_{j}^{+}(\theta_{j}^{n}) < 0 \text{ and } \mathcal{P}_{j}^{-}(\theta_{j}^{n}) \geq 0, \\ \theta_{ji}^{n}, & \text{otherwise,} \end{cases}$ $h_{j}^{-} \stackrel{\text{def}}{=} \begin{cases} h_{j}^{n}, \text{ if } \mathcal{P}_{j}^{+}(\theta_{ij}^{n}) < 0 \text{ and } \mathcal{P}_{j}^{-}(\theta_{ij}^{n}) < 0, \\ \left(\frac{\theta_{ij}^{n}}{2}\right)^{2} \left(h_{j-1}^{n} - 2h_{j}^{n} + h_{j+1}^{n}\right) - \frac{\theta_{ij}^{n}}{2} \left(h_{j-1}^{n} - 4h_{j}^{n} + 3h_{j+1}^{n}\right) + h_{j+1}^{n}, \text{ otherwise,} \end{cases}$ $h_{j}^{+} \stackrel{\text{def}}{=} \begin{cases} h_{j+1}^{n}, \text{ if } \mathcal{P}_{j}^{+}(\theta_{ij}^{n}) < 0 \text{ and } \mathcal{P}_{j}^{-}(\theta_{ij}^{n}) < 0, \\ (\theta_{ij}^{n})^{2} \\ 2 \end{cases} \begin{pmatrix} h_{j+2}^{n} - 2h_{j+1}^{n} + h_{j}^{n} \end{pmatrix} - \frac{\theta_{ij}^{n}}{2} \begin{pmatrix} h_{j+2}^{n} - h_{j}^{n} \end{pmatrix} + h_{j+1}^{n}, \text{ otherwise,} \end{cases}$ and $\mathcal{P}_{i}^{\pm}(\theta) \stackrel{\text{def}}{=} (\theta - \delta_{i}^{\pm})(\theta - \delta_{i+1}^{\pm})$ where $\delta_j^{-} \stackrel{\text{def}}{=} \frac{2(h_{j+1}^n - h_j^n)}{h_{j-1}^n - 2h_j^n + h_{j-1}^n},$ $\delta_{j}^{+} \stackrel{\text{def}}{=} \frac{2(h_{j+1}^{"} - h_{j}^{"})}{h_{j}^{"} - 2h_{j}^{"} + h_{j}^{"}},$ $\delta_{j+1}^{+} \stackrel{\text{def}}{=} \frac{h_{j+2}^{n} - h_{j}^{n}}{h^{n} - 2h^{n} + h^{n}}.$ $\delta_{j+1}^{-} \stackrel{\text{def}}{=} \frac{h_{j-1}'' - 4h_j'' + 3h_{j+1}''}{h_j'' - 2h_j'' + h_j''},$