November, 2011

MODELLING AND SIMULATION OF LIQUID-VAPOR PHASE TRANSITION A CONTRIBUTION TO THE STUDY OF THE BOILING CRISIS

Gloria Faccanoni¹ Grégoire Allaire² Samuel Кокн³

¹IMATH – Université du Sud Toulon-Var (France)

²CMAP – École Polytechnique (France)

³CEA Saclay (France)

OUTLINE

2 Model

- Governing equations
- Equation of State

3 Numerical Approximation and Example

- Conservation Laws
- Numerical Scheme
- Numerical Example

PRESSURIZED WATER REACTOR

PRESSURIZED WATER REACTOR

PRESSURIZED WATER REACTOR

Nucleate Boiling

1. Context 2. Model 3. Approximation 4. Conclusion 5. Appendix

Core of a Pressurized Water Reactor

Nucleate Boiling

Phenomenon

Liquid phase heated by a wall at a fixed temperature T^{wall} . When T^{wall} increases, we switch from a Nucleate Boiling to a Film Boiling.

PHENOMENON

Liquid phase heated by a wall at a fixed temperature T^{wall} . When T^{wall} increases, we switch from a Nucleate Boiling to a Film Boiling.

source: http://www.spaceflight.esa.int/users/fluids/TT_boiling.htm

PHENOMENON

Liquid phase heated by a wall at a fixed temperature T^{wall} . When T^{wall} increases, we switch from a Nucleate Boiling to a Film Boiling.

Nucleate Boiling

source: http://www.spaceflight.esa.int/users/fluids/TT_boiling.htm

Nucleate Boiling

PHENOMENON

Liquid phase heated by a wall at a fixed temperature T^{wall} . When T^{wall} increases, we switch from a Nucleate Boiling to a Film Boiling.

Nucleate Boiling

Film Boiling

source: http://www.spaceflight.esa.int/users/fluids/TT_boiling.htm

Nucleate Boiling

OUTLINE

Context

2 Model

- Governing equations
- Equation of State

3 Numerical Approximation and Example

- Conservation Laws
- Numerical Scheme
- Numerical Example

"Ingredients" of the Model

- Simulating all bubbles (no mixture),
- System of PDEs for the fluid flow (monophasic or diphasic),
- Phase transition (pressure and/or temperature variations),
- Heat Diffusion,
- Surface Tension,
- Gravity.

OUTLINE

2 Model

Governing equations

Equation of State

3 Numerical Approximation and Example

- Conservation Laws
- Numerical Scheme
- Numerical Example

• Conclusion

EULER SYSTEM

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = \mathbf{0}, \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P \ \mathbb{I}) = \mathfrak{V}_{vf} - \mathfrak{S}_{sf}, \\ \partial_t \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \right) + \operatorname{div} \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \mathbf{u} + P \ \mathbf{u} \right) = (\mathfrak{V}_{vf} - \mathfrak{S}_{sf}) \cdot \mathbf{u} - \operatorname{div}(q). \end{cases}$$

Unknowns:

Source terms:

- $(x, t) \mapsto \varrho$ specific density,
- $(\mathbf{x}, t) \mapsto \varepsilon$ specific internal energy,
- $(\mathbf{x}, t) \mapsto \mathbf{u}$ velocity;

- $(\varrho, \varepsilon) \mapsto \mathfrak{V}_{\mathsf{vf}}$ body forces,
- $(\varrho, \varepsilon) \mapsto \mathfrak{S}_{sf}$ surface forces,
- $(\varrho, \varepsilon) \mapsto \operatorname{div}(q)$ heat transfer.

EOS: $(\varrho, \varepsilon) \mapsto P$

EULER SYSTEM

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = \mathbf{0}, \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + \mathbf{P} \mathbb{I}) = \mathfrak{V}_{vf} - \mathfrak{S}_{sf}, \\ \partial_t \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \right) + \operatorname{div} \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \mathbf{u} + \mathbf{P} \mathbf{u} \right) = (\mathfrak{V}_{vf} - \mathfrak{S}_{sf}) \cdot \mathbf{u} - \operatorname{div}(q). \end{cases}$$

Unknowns:

Source terms:

- $(x, t) \mapsto \varrho$ specific density,
- $(\mathbf{x}, t) \mapsto \varepsilon$ specific internal energy,
- $(\mathbf{x}, t) \mapsto \mathbf{u}$ velocity;

•
$$(arrho,arepsilon)\mapsto \mathfrak{V}_{\mathsf{vf}}$$
 body forces,

•
$$(arrho,arepsilon)\mapsto \mathfrak{S}_{\sf sf}$$
 surface forces,

• $(\varrho, \varepsilon) \mapsto \operatorname{div}(q)$ heat transfer.

EOS:
$$(\varrho, \varepsilon) \mapsto P$$

OUTLINE

Context

2 Model

- Governing equations
- Equation of State

8 Numerical Approximation and Example

- Conservation Laws
- Numerical Scheme
- Numerical Example

• Conclusion

EOS of each Phase $\alpha = liq, vap$

- $\tau = 1/\varrho$ specific volume
- ε specific internal energy

 $(\tau, \varepsilon) \mapsto s_{\alpha}$ specific entropy (Hessian matrix neg. def.);

$$\left| \begin{array}{c} T_{\alpha} \stackrel{\text{def}}{=} \left(\frac{\partial s_{\alpha}}{\partial \varepsilon} \Big|_{\tau} \right)^{-1} > 0 \\ P_{\alpha} \stackrel{\text{def}}{=} T_{\alpha} \frac{\partial s_{\alpha}}{\partial \tau} \Big|_{\varepsilon} > 0 \\ g_{\alpha} \stackrel{\text{def}}{=} \varepsilon + P_{\alpha} \tau - T_{\alpha} s_{\alpha} \\ (c_{\alpha})^{2} \stackrel{\text{def}}{=} \tau^{2} \left(P_{\alpha} \left. \frac{\partial P_{\alpha}}{\partial \varepsilon} \right|_{\tau} - \frac{\partial P_{\alpha}}{\partial \tau} \right|_{\varepsilon} \right) \right|_{\tau} \right|_{\varepsilon}$$

temperature,

pressure,

free enthalpy (Gibbs potential),

speed of sound.

EOS of each Phase $\alpha = liq, vap$

- $\tau = 1/\varrho$ specific volume
- ε specific internal energy

 $(\tau, \varepsilon) \mapsto s_{\alpha}$ specific entropy (Hessian matrix neg. def.);

$$\left| \begin{array}{c} T_{\alpha} \stackrel{\text{def}}{=} \left(\frac{\partial s_{\alpha}}{\partial \varepsilon} \Big|_{\tau} \right)^{-1} > 0 \\ P_{\alpha} \stackrel{\text{def}}{=} T_{\alpha} \frac{\partial s_{\alpha}}{\partial \tau} \Big|_{\varepsilon} > 0 \\ g_{\alpha} \stackrel{\text{def}}{=} \varepsilon + P_{\alpha} \tau - T_{\alpha} s_{\alpha} \\ (c_{\alpha})^{2} \stackrel{\text{def}}{=} \tau^{2} \left(P_{\alpha} \left| \frac{\partial P_{\alpha}}{\partial \varepsilon} \right|_{\tau} - \frac{\partial P_{\alpha}}{\partial \tau} \right|_{\varepsilon} \right)$$

temperature,

pressure,

free enthalpy (Gibbs potential),

speed of sound.

EOS of each Phase $\alpha = liq, vap$

- $\tau = 1/\varrho$ specific volume
- ε specific internal energy

 $(\tau, \varepsilon) \mapsto s_{\alpha}$ specific entropy (Hessian matrix neg. def.);

$$\left\{ \begin{array}{l} T_{\alpha} \stackrel{\text{def}}{=} \left(\frac{\partial s_{\alpha}}{\partial \varepsilon} \Big|_{\tau} \right)^{-1} > 0 & \text{temperature,} \\ P_{\alpha} \stackrel{\text{def}}{=} T_{\alpha} \frac{\partial s_{\alpha}}{\partial \tau} \Big|_{\varepsilon} > 0 & \text{pressure,} \\ g_{\alpha} \stackrel{\text{def}}{=} \varepsilon + P_{\alpha} \tau - T_{\alpha} s_{\alpha} & \text{free enthalpy (Gibbs potential),} \\ (c_{\alpha})^{2} \stackrel{\text{def}}{=} \tau^{2} \left(P_{\alpha} \left. \frac{\partial P_{\alpha}}{\partial \varepsilon} \right|_{\tau} - \left. \frac{\partial P_{\alpha}}{\partial \tau} \right|_{\varepsilon} \right) & \text{speed of sound.} \end{array} \right.$$

EXAMPLE: STIFFENED GAS

$$|(au,arepsilon)\mapsto s_lpha=c_{m{v}_lpha}\ln(arepsilon-q_lpha-\pi_lpha au)+c_{m{v}_lpha}(\gamma_lpha-1)\ln au+m_lpha$$

$$\begin{split} T_{\alpha} &= \frac{\varepsilon - q_{\alpha} - \pi_{\alpha}\tau}{c_{v_{\alpha}}}, \\ P_{\alpha} &= \frac{\varepsilon - q_{\alpha} - \pi_{\alpha}\tau}{\tau} (\gamma_{\alpha} - 1) - \pi_{\alpha} = (\gamma_{\alpha} - 1)\frac{\varepsilon - q_{\alpha}}{\tau} - \gamma_{\alpha}\pi_{\alpha}, \\ g_{\alpha} &= q_{\alpha} + (\varepsilon - q_{\alpha} - \pi_{\alpha}\tau) \left(\gamma_{\alpha} - \frac{m_{\alpha}}{c_{v_{\alpha}}} - \ln\left((\varepsilon - q_{\alpha} - \pi_{\alpha}\tau)\tau^{(\gamma_{\alpha} - 1)}\right)\right), \\ c_{\alpha}^{2} &= \gamma_{\alpha}(\gamma_{\alpha} - 1)(\varepsilon - q_{\alpha} - \pi_{\alpha}\tau) = \gamma_{\alpha}(P_{\alpha} + \pi_{\alpha})\tau = \gamma_{\alpha}(\gamma_{\alpha} - 1)c_{v_{\alpha}}T_{\alpha} > 0. \end{split}$$

Phase	$c_v [\mathrm{J kg^{-1} K^{-1}}]$	γ	π [Pa]	<i>q</i> [J kg ^{−1}]	$m [J kg^{-1} K^{-1}]$
Liquid	1816.2	2.35	10^{9}	$-1167.056 imes 10^{3}$	-32765.55596
Vapor	1040.14	1.43	0	2030.255×10^3	-33265.65947

Table: Parameters proposed by [O. LE METAYER] for water and steam: $\gamma > 1$ adiabatic coefficient, π molecular attraction, q binding energy.

G. FACCANONI (Université du Sud Toulon-Var)

Nucleate Boiling

11 / 29

EXAMPLE: STIFFENED GAS

$$(au,arepsilon)\mapsto s_lpha=c_{m{v}_lpha}\ln(arepsilon-q_lpha-\pi_lpha au)+c_{m{v}_lpha}(\gamma_lpha-1)\ln au+m_lpha$$

$$\begin{split} T_{\alpha} &= \frac{\varepsilon - q_{\alpha} - \pi_{\alpha}\tau}{c_{v_{\alpha}}}, \\ P_{\alpha} &= \frac{\varepsilon - q_{\alpha} - \pi_{\alpha}\tau}{\tau} (\gamma_{\alpha} - 1) - \pi_{\alpha} = (\gamma_{\alpha} - 1)\frac{\varepsilon - q_{\alpha}}{\tau} - \gamma_{\alpha}\pi_{\alpha}, \\ g_{\alpha} &= q_{\alpha} + (\varepsilon - q_{\alpha} - \pi_{\alpha}\tau) \left(\gamma_{\alpha} - \frac{m_{\alpha}}{c_{v_{\alpha}}} - \ln\left((\varepsilon - q_{\alpha} - \pi_{\alpha}\tau)\tau^{(\gamma_{\alpha} - 1)}\right)\right), \\ c_{\alpha}^{2} &= \gamma_{\alpha}(\gamma_{\alpha} - 1)(\varepsilon - q_{\alpha} - \pi_{\alpha}\tau) = \gamma_{\alpha}(P_{\alpha} + \pi_{\alpha})\tau = \gamma_{\alpha}(\gamma_{\alpha} - 1)c_{v_{\alpha}}T_{\alpha} > 0. \end{split}$$

Phase	$c_v [\mathrm{J kg^{-1} K^{-1}}]$	γ	π [Pa]	q [J kg ⁻¹]	$m [J kg^{-1} K^{-1}]$
Liquid	1816.2	2.35	10^{9}	-1167.056×10^{3}	-32765.55596
Vapor	1040.14	1.43	0	2030.255×10^3	-33265.65947

Table: Parameters proposed by [O. LE METAYER] for water and steam: $\gamma > 1$ adiabatic coefficient, π molecular attraction, q binding energy.

G. FACCANONI (Université du Sud Toulon-Var)

Nucleate Boiling

LIQUID-VAPOR INTERFACE

$$(\tau,\varepsilon)\mapsto s = \begin{cases} s^{\mathrm{liq}} & \mathrm{if} \ \varphi = 1; \\ s^{\mathrm{vap}} & \mathrm{if} \ \varphi = 0. \end{cases} \implies (\tau,\varepsilon)\mapsto P = \begin{cases} P^{\mathrm{liq}} & \mathrm{if} \ \varphi = 1; \\ P^{\mathrm{vap}} & \mathrm{if} \ \varphi = 0. \end{cases}$$

→ Goal ①: define $(\tau, \varepsilon) \mapsto \varphi$ for physical values of (τ, ε) → Goal ②: define $(\tau, \varepsilon) \mapsto \varphi$ for (τ, ε) in the mixture cells → Goal ③: define $(\tau, \varepsilon) \mapsto s$

Nucleate Boiling

LIQUID-VAPOR INTERFACE

$$(\tau,\varepsilon) \mapsto s = \begin{cases} s^{\text{liq}} & \text{if } \varphi = 1; \\ \underbrace{\red{main \mathcal{P}}}_{s^{\text{vap}}} & \text{if } 0 < \varphi < 1; \\ s^{\text{vap}} & \text{if } \varphi = 0. \end{cases} \longrightarrow (\tau,\varepsilon) \mapsto P = \begin{cases} P^{\text{liq}} & \text{if } \varphi = 1; \\ \underbrace{\red{main \mathcal{P}}}_{p^{\text{vap}}} & \text{if } 0 < \varphi < 1; \\ P^{\text{vap}} & \text{if } \varphi = 0. \end{cases}$$

→ Goal ①: define $(\tau, \varepsilon) \mapsto \varphi$ for physical values of (τ, ε)

→ Goal ②: define $(\tau, \varepsilon) \mapsto \varphi$ for (τ, ε) in the mixture cells

ightarrow Goal ${}^{\textcircled{3}}$: define $(au,arepsilon)\mapsto s$

LIQUID-VAPOR INTERFACE

$$(\tau, \varepsilon) \mapsto s = \left\{ \begin{array}{ll} s^{\mathrm{liq}} & \mathrm{if} \ \varphi = 1; \\ \mathbf{s}^{\mathrm{mix}} & \mathrm{if} \ 0 < \varphi < 1; \\ s^{\mathrm{vap}} & \mathrm{if} \ \varphi = 0. \end{array} \right. \longrightarrow (\tau, \varepsilon) \mapsto P = \left\{ \begin{array}{ll} \mathcal{P}^{\mathrm{liq}} & \mathrm{if} \ \varphi = 1; \\ \mathbf{P}^{\mathrm{mix}} & \mathrm{if} \ 0 < \varphi < 1; \\ \mathcal{P}^{\mathrm{vap}} & \mathrm{if} \ \varphi = 0. \end{array} \right.$$

◆ Goal ①: define (\(\tau, \varepsilon\)) \(\mapsilon\) \(\varepsilon\) for physical values of (\(\tau, \varepsilon\))
◆ Goal ②: define (\(\tau, \varepsilon\)) \(\mapsilon\) for (\(\tau, \varepsilon\)) in the mixture cells
◆ Goal ③: define (\(\tau, \varepsilon\)) \(\mapsilon\) s

G. FACCANONI (Université du Sud Toulon-Var)

Nucleate Boiling

12 / 29

• y mass fraction

•
$$\begin{cases} \tau \stackrel{\text{\tiny def}}{=} y \tau_{\text{liq}} + (1 - y) \tau_{\text{vap}} \\ \varepsilon \stackrel{\text{\tiny def}}{=} y \varepsilon_{\text{liq}} + (1 - y) \varepsilon_{\text{vap}} \end{cases}$$

• z volume fraction s.t. $y\tau_{liq} = z\tau$

• ψ energy fraction s.t. $y\varepsilon_{liq} = \psi\varepsilon$

• y mass fraction

•
$$\begin{cases} \tau \stackrel{\text{\tiny def}}{=} y \tau_{\text{liq}} + (1 - y) \tau_{\text{vap}} \\ \varepsilon \stackrel{\text{\tiny def}}{=} y \varepsilon_{\text{liq}} + (1 - y) \varepsilon_{\text{vap}} \end{cases}$$

- z volume fraction s.t. $y\tau_{liq} = z\tau$
- ψ energy fraction s.t. $y \varepsilon_{liq} = \psi \varepsilon$

ENTROPY WITHOUT PHASE CHANGE

$$\begin{split} \sigma &\stackrel{\text{det}}{=} y \mathbf{s}_{\text{liq}}(\tau_{\text{liq}}, \varepsilon_{\text{liq}}) + (1 - y) \mathbf{s}_{\text{vap}}(\tau_{\text{vap}}, \varepsilon_{\text{vap}}) \\ &= y \mathbf{s}_{\text{liq}}\left(\frac{z}{y}\tau, \frac{\psi}{y}\varepsilon\right) + (1 - y) \mathbf{s}_{\text{vap}}\left(\frac{1 - z}{1 - y}\tau, \frac{1 - \psi}{1 - y}\varepsilon\right) \\ P &= \left(\frac{\partial \sigma}{\partial \varepsilon}\Big|_{\tau; y, z, \psi}\right)^{-1} \left.\frac{\partial \sigma}{\partial \tau}\Big|_{\varepsilon; y, z, \psi} \end{split}$$

y mass fraction

•
$$\begin{cases} \tau \stackrel{\text{\tiny def}}{=} y \tau_{\text{liq}} + (1 - y) \tau_{\text{vap}} \\ \varepsilon \stackrel{\text{\tiny def}}{=} y \varepsilon_{\text{liq}} + (1 - y) \varepsilon_{\text{vap}} \end{cases}$$

- z volume fraction s.t. $y\tau_{liq} = z\tau$
- ψ energy fraction s.t. $y\varepsilon_{\rm liq} = \psi\varepsilon$

ENTROPY WITHOUT PHASE CHANGE

$$\sigma \stackrel{\text{def}}{=} y s_{\text{liq}}(\tau_{\text{liq}}, \varepsilon_{\text{liq}}) + (1 - y) s_{\text{vap}}(\tau_{\text{vap}}, \varepsilon_{\text{vap}})$$
$$= y s_{\text{liq}}\left(\frac{z}{y}\tau, \frac{\psi}{y}\varepsilon\right) + (1 - y) s_{\text{vap}}\left(\frac{1 - z}{1 - y}\tau, \frac{1 - \psi}{1 - y}\varepsilon\right)$$
$$P = \left(\frac{\partial \sigma}{\partial \varepsilon}\Big|_{\tau, y, z, \psi}\right)^{-1} \left.\frac{\partial \sigma}{\partial \tau}\Big|_{\varepsilon; y, z, \psi}$$

y mass fraction

•
$$\begin{cases} \tau \stackrel{\text{\tiny def}}{=} y \tau_{\text{liq}} + (1 - y) \tau_{\text{vap}} \\ \varepsilon \stackrel{\text{\tiny def}}{=} y \varepsilon_{\text{liq}} + (1 - y) \varepsilon_{\text{vap}} \end{cases}$$

- z volume fraction s.t. $y\tau_{liq} = z\tau$
- ψ energy fraction s.t. $y\varepsilon_{\mathrm{liq}} = \psi\varepsilon$

ENTROPY WITHOUT PHASE CHANGE

$$\sigma \stackrel{\text{def}}{=} y s_{\text{liq}}(\tau_{\text{liq}}, \varepsilon_{\text{liq}}) + (1 - y) s_{\text{vap}}(\tau_{\text{vap}}, \varepsilon_{\text{vap}})$$
$$= y s_{\text{liq}}\left(\frac{z}{y}\tau, \frac{\psi}{y}\varepsilon\right) + (1 - y) s_{\text{vap}}\left(\frac{1 - z}{1 - y}\tau, \frac{1 - \psi}{1 - y}\varepsilon\right)$$
$$P = \left(\frac{\partial \sigma}{\partial \varepsilon}\Big|_{\tau; y, z, \psi}\right)^{-1} \frac{\partial \sigma}{\partial \tau}\Big|_{\varepsilon; y, z, \psi}$$

ENTROPY AT EQUILIBRIUM

$$(\tau,\varepsilon)\mapsto s^{\rm eq}(\tau,\varepsilon)=\sigma(\tau,\varepsilon,z^{\rm eq}(\tau,\varepsilon),y^{\rm eq}(\tau,\varepsilon),\psi^{\rm eq}(\tau,\varepsilon))$$

DEFINITION [H. CALLEN, PH. HELLUY ...

Optimization Problem:

$$s^{\text{eq}}(\tau,\varepsilon) \stackrel{\text{\tiny def}}{=} \max_{z,y,\psi \in [0,1]^3} \sigma(\tau,\varepsilon,z,y,\psi)$$

EOS OF PHASE CHANGE

ENTROPY AT EQUILIBRIUM

$$(\tau,\varepsilon)\mapsto s^{\mathrm{eq}}(\tau,\varepsilon)=\sigma(\tau,\varepsilon,z^{\mathrm{eq}}(\tau,\varepsilon),y^{\mathrm{eq}}(\tau,\varepsilon),\psi^{\mathrm{eq}}(\tau,\varepsilon))$$

DEFINITION [H. CALLEN, PH. HELLUY ...]

Optimization Problem:

$$s^{\mathrm{eq}}(\tau,\varepsilon) \stackrel{\text{\tiny def}}{=} \max_{z,y,\psi \in [0,1]^3} \sigma(\tau,\varepsilon,z,y,\psi)$$

ENTROPY AT EQUILIBRIUM

$$(\tau,\varepsilon)\mapsto s^{\mathrm{eq}}(\tau,\varepsilon)=\sigma(\tau,\varepsilon,z^{\mathrm{eq}}(\tau,\varepsilon),y^{\mathrm{eq}}(\tau,\varepsilon),\psi^{\mathrm{eq}}(\tau,\varepsilon))$$

DEFINITION [H. CALLEN, PH. HELLUY ...]

Optimization Problem:

$$\begin{split} s^{\mathrm{eq}}(\tau,\varepsilon) &\stackrel{\text{\tiny def}}{=} \max_{z,y,\psi \in [0,1]^3} \sigma(\tau,\varepsilon,z,y,\psi) \\ &= \left\{ s_{\mathrm{liq}}(\tau,\varepsilon), s_{\mathrm{vap}}(\tau,\varepsilon) \right\} \end{split}$$

ENTROPY AT EQUILIBRIUM

$$(\tau,\varepsilon)\mapsto s^{\mathrm{eq}}(\tau,\varepsilon)=\sigma(\tau,\varepsilon,z^{\mathrm{eq}}(\tau,\varepsilon),y^{\mathrm{eq}}(\tau,\varepsilon),\psi^{\mathrm{eq}}(\tau,\varepsilon))$$

DEFINITION [H. CALLEN, PH. HELLUY ...]

Optimization Problem:

$$\begin{split} s^{\text{eq}}(\tau,\varepsilon) &\stackrel{\text{def}}{=} \max_{z,y,\psi \in [0,1]^3} \sigma(\tau,\varepsilon,z,y,\psi) \\ &= \max\left\{ s_{\text{liq}}(\tau,\varepsilon), s_{\text{vap}}(\tau,\varepsilon) \right\} \end{split}$$

ENTROPY AT EQUILIBRIUM

$$(\tau,\varepsilon)\mapsto s^{\mathrm{eq}}(\tau,\varepsilon)=\sigma(\tau,\varepsilon,z^{\mathrm{eq}}(\tau,\varepsilon),y^{\mathrm{eq}}(\tau,\varepsilon),\psi^{\mathrm{eq}}(\tau,\varepsilon))$$

DEFINITION [H. CALLEN, PH. HELLUY ...]

Optimization Problem:

$$s^{\text{eq}}(\tau,\varepsilon) \stackrel{\text{\tiny def}}{=} \max_{z,y,\psi \in [0,1]^3} \sigma(\tau,\varepsilon,z,y,\psi)$$
$$= \cos \Big\{ \max \big\{ s_{\text{liq}}(\tau,\varepsilon), s_{\text{vap}}(\tau,\varepsilon) \big\} \Big\}$$

EOS OF PHASE CHANGE

ENTROPY AT EQUILIBRIUM

$$(\tau,\varepsilon)\mapsto s^{\mathrm{eq}}(\tau,\varepsilon)=\sigma(\tau,\varepsilon,z^{\mathrm{eq}}(\tau,\varepsilon),y^{\mathrm{eq}}(\tau,\varepsilon),\psi^{\mathrm{eq}}(\tau,\varepsilon))$$

DEFINITION [H. CALLEN, PH. HELLUY ...]

Optimization Problem:

$$s^{\text{eq}}(\tau,\varepsilon) \stackrel{\text{\tiny def}}{=} \max_{z,y,\psi \in [0,1]^3} \sigma(\tau,\varepsilon,z,y,\psi)$$
$$= \cos \left\{ \max \left\{ s_{\text{liq}}(\tau,\varepsilon), s_{\text{vap}}(\tau,\varepsilon) \right\} \right\}$$

ANALYTICAL EOS

(au, arepsilon) fixed

$$(\tau_{\text{liq}}, \varepsilon_{\text{liq}}, \tau_{\text{vap}}, \varepsilon_{\text{vap}}, y) \text{ SOLUTION OF}$$

$$\begin{pmatrix} P, T \end{pmatrix} \text{ SOLUTION OF} \\ P_{\text{liq}}(\tau_{\text{liq}}, \varepsilon_{\text{liq}}) = P_{\text{vap}}(\tau_{\text{vap}}, \varepsilon_{\text{vap}}) \\ T_{\text{liq}}(\tau_{\text{liq}}, \varepsilon_{\text{liq}}) = T_{\text{vap}}(\tau_{\text{vap}}, \varepsilon_{\text{vap}}) \\ g_{\text{liq}}(\tau_{\text{liq}}, \varepsilon_{\text{liq}}) = g_{\text{vap}}(\tau_{\text{vap}}, \varepsilon_{\text{vap}}) \\ \tau = y\tau_{\text{liq}} + (1 - y)\tau_{\text{vap}} \\ \varepsilon = y\varepsilon_{\text{liq}} + (1 - y)\varepsilon_{\text{vap}} \\ \varepsilon = y\varepsilon_{\text{liq}} + (1 - y)\varepsilon_{\text{vap}} \\ T \mapsto P = P^{\text{val}}(T) \\ T \mapsto P = P^{\text{val}}(T)$$

$$T \text{ Solution of}$$

$$T \frac{\tau - \tau_{\text{vap}}(P, T)}{\tau_{\text{liq}}(T) - \tau_{\text{vap}}^{\text{val}}(T)} = \frac{\varepsilon - \varepsilon_{\text{vap}}(P, T)}{\varepsilon_{\text{liq}}^{\text{val}}(T) - \varepsilon_{\text{vap}}(T)} \quad \text{where } \left(\frac{\tau}{\varepsilon} \right)_{\alpha}^{\text{sat}} (T) \stackrel{\text{sat}}{=} \left(\frac{\tau}{\varepsilon} \right)_{\alpha} (P^{\text{sat}}(T), T)$$

ANALYTICAL EOS

 (τ, ε) fixed

$$\begin{aligned} & \tau_{\text{liq}}, \varepsilon_{\text{liq}}, \tau_{\text{vap}}, \varepsilon_{\text{vap}}, y \right) \text{ solution of} \\ & \left\{ \begin{array}{l} P_{\text{liq}}(\tau_{\text{liq}}, \varepsilon_{\text{liq}}) = P_{\text{vap}}(\tau_{\text{vap}}, \varepsilon_{\text{vap}}) \\ T_{\text{liq}}(\tau_{\text{liq}}, \varepsilon_{\text{liq}}) = T_{\text{vap}}(\tau_{\text{vap}}, \varepsilon_{\text{vap}}) \\ g_{\text{liq}}(\tau_{\text{liq}}, \varepsilon_{\text{liq}}) = g_{\text{vap}}(\tau_{\text{vap}}, \varepsilon_{\text{vap}}) \\ \tau = y\tau_{\text{liq}} + (1 - y)\tau_{\text{vap}} \\ \varepsilon = y\varepsilon_{\text{liq}} + (1 - y)\varepsilon_{\text{vap}} \end{aligned} \right. \end{aligned}$$

(P, T) solution of

$$\begin{cases} \tau_{\alpha} = \tau_{\alpha}(P, T) \\ \varepsilon_{\alpha} = \varepsilon_{\alpha}(P, T) \\ g_{\text{liq}}(P, T) = g_{\text{vap}}(P, T) \\ y = \frac{\tau - \tau_{\text{vap}}(P, T)}{\tau_{\text{liq}}(P, T) - \tau_{\text{vap}}(P, T)} = \frac{\varepsilon - \varepsilon_{\text{vap}}(P, T)}{\varepsilon_{\text{liq}}(P, T) - \varepsilon_{\text{vap}}(P, T)} \end{cases}$$

 $T \mapsto P = P^{\operatorname{sat}}(T)$

T SOLUTION OF

$$\frac{\tau - \tau_{\text{vap}}^{\text{sat}}(T)}{\underset{\text{liq}}{\overset{\text{sat}}{(T)}} - \tau_{\text{vap}}^{\text{sat}}(T)} = \frac{\varepsilon - \varepsilon_{\text{vap}}^{\text{sat}}(T)}{\varepsilon_{\text{liq}}^{\text{sat}}(T) - \varepsilon_{\text{vap}}^{\text{sat}}(T)} \quad \text{ where } \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\text{sat}}(T) \stackrel{\text{\tiny def}}{=} \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha} (P^{\text{sat}}(T) - \varphi^{\text{sat}}(T))$$
ANALYTICAL EOS

 (τ, ε) fixed

ANALYTICAL EOS

 (τ, ε) fixed

$$\begin{array}{c} (\tau_{\mathrm{liq}}, \varepsilon_{\mathrm{liq}}, \tau_{\mathrm{vap}}, \varepsilon_{\mathrm{vap}}, y) \text{ SOLUTION OF } \\ \begin{cases} P_{\mathrm{liq}}(\tau_{\mathrm{liq}}, \varepsilon_{\mathrm{liq}}) = P_{\mathrm{vap}}(\tau_{\mathrm{vap}}, \varepsilon_{\mathrm{vap}}) \\ T_{\mathrm{liq}}(\tau_{\mathrm{liq}}, \varepsilon_{\mathrm{liq}}) = T_{\mathrm{vap}}(\tau_{\mathrm{vap}}, \varepsilon_{\mathrm{vap}}) \\ g_{\mathrm{liq}}(\tau_{\mathrm{liq}}, \varepsilon_{\mathrm{liq}}) = g_{\mathrm{vap}}(\tau_{\mathrm{vap}}, \varepsilon_{\mathrm{vap}}) \\ \tau = y\tau_{\mathrm{liq}} + (1 - y)\tau_{\mathrm{vap}} \\ \varepsilon = y\varepsilon_{\mathrm{liq}} + (1 - y)\varepsilon_{\mathrm{vap}} \end{cases} \\ \begin{pmatrix} \tau &= \tau_{\alpha}(P, T) \\ \varepsilon_{\alpha} = \varepsilon_{\alpha}(P, T) \\ g_{\mathrm{liq}}(P, T) = g_{\mathrm{vap}}(P, T) \\ y = \frac{\tau - \tau_{\mathrm{vap}}(P, T)}{\tau_{\mathrm{liq}}(P, T) - \tau_{\mathrm{vap}}(P, T)} = \frac{\varepsilon - \varepsilon_{\mathrm{vap}}(P, T)}{\varepsilon_{\mathrm{liq}}(P, T) - \varepsilon_{\mathrm{vap}}(P, T)} \\ \hline T \mapsto P = P^{\mathrm{sat}}(T) \\ \hline T \text{ Solution of} \end{cases} \\ \begin{array}{c} \tau - \tau_{\mathrm{vap}}^{\mathrm{sat}}(T) \\ \tau_{\mathrm{liq}}^{\mathrm{sat}}(T) - \tau_{\mathrm{vap}}^{\mathrm{sat}}(T) \\ \varepsilon_{\mathrm{liq}}^{\mathrm{sat}}(T) - \varepsilon_{\mathrm{vap}}^{\mathrm{sat}}(T) \\ \end{array} \\ \end{array}$$

Theorem

If $\tau^*_{\text{liq}} \neq \tau^*_{\text{vap}}$ and $\varepsilon^*_{\text{liq}} \neq \varepsilon^*_{\text{vap}}$ (first order phase transition) then $c^{\text{eq}}(\tau, \varepsilon) > 0$.

$$(\boldsymbol{c}^{\mathrm{eq}})^{2} \stackrel{\text{\tiny def}}{=} \tau^{2} \left(P^{\mathrm{eq}} \left. \frac{\partial P^{\mathrm{eq}}}{\partial \varepsilon} \right|_{\tau} - \left. \frac{\partial P^{\mathrm{eq}}}{\partial \tau} \right|_{\varepsilon} \right) = \underbrace{-\tau^{2} T^{\mathrm{eq}}}_{\varepsilon^{2}} \left[\begin{array}{c} P^{\mathrm{eq}}, -1 \end{array} \right] \begin{bmatrix} \boldsymbol{s}^{\mathrm{eq}}_{\varepsilon^{2}} & \boldsymbol{s}^{\mathrm{eq}}_{\tau^{2}} \\ \boldsymbol{s}^{\mathrm{eq}}_{\tau^{2}} & \boldsymbol{s}^{\mathrm{eq}}_{\tau^{2}} \end{bmatrix} \begin{bmatrix} P^{\mathrm{eq}} \\ -1 \end{bmatrix} \end{bmatrix}$$

Hessian matrix of $(au,arepsilon)\mapsto s^{ ext{eq}}$

• for all (τ, ε) pure phase state

 $\mathbf{v}^{\mathcal{T}} \operatorname{d}^2\!\! s^{\operatorname{eq}}(au, arepsilon) \, \mathbf{v} < 0 \quad orall \, \mathbf{v}
eq \mathbf{0},$

• for all (τ, ε) equilibrium mixture state

 $\exists \mathbf{v}(\tau,\varepsilon) \neq \mathbf{0} \text{ s.t. } \mathbf{v}^T d^2 s^{eq}(\tau,\varepsilon) \mathbf{v} = \mathbf{0}.$

<u>Theorem</u>

If $\tau^*_{\rm liq} \neq \tau^*_{\rm vap}$ and $\varepsilon^*_{\rm liq} \neq \varepsilon^*_{\rm vap}$ (first order phase transition) then $c^{\rm eq}(\tau,\varepsilon) > 0$.

$$(c^{\text{eq}})^{2} \stackrel{\text{def}}{=} \tau^{2} \left(P^{\text{eq}} \left. \frac{\partial P^{\text{eq}}}{\partial \varepsilon} \right|_{\tau} - \left. \frac{\partial P^{\text{eq}}}{\partial \tau} \right|_{\varepsilon} \right) = \underbrace{-\tau^{2} T^{\text{eq}}}_{\nu} \underbrace{\left[P^{\text{eq}}, -1 \right] \left[\begin{array}{c} s^{\text{eq}}_{\varepsilon \varepsilon} & s^{\text{eq}}_{\tau \varepsilon} \\ s^{\text{eq}}_{\tau \varepsilon} & s^{\text{eq}}_{\tau \tau} \end{array} \right] \left[\begin{array}{c} P^{\text{eq}} \\ -1 \end{array} \right]}_{\nu} \leq 0$$

Hessian matrix of $(au,arepsilon)\mapsto oldsymbol{s}^{ ext{eq}}$

• for all (au, arepsilon) pure phase state

$$\mathbf{v}^{\mathcal{T}} \operatorname{d}^2 \! s^{\operatorname{eq}}(au, arepsilon) \, \mathbf{v} < 0 \quad \forall \; \mathbf{v} \neq \mathbf{0},$$

• for all (τ, ε) equilibrium mixture state

$$\exists \mathbf{v}(\tau,\varepsilon) \neq \mathbf{0} \text{ s.t. } \mathbf{v}^T d^2 s^{eq}(\tau,\varepsilon) \mathbf{v} = \mathbf{0}.$$

Theorem

If $\tau^*_{\rm liq} \neq \tau^*_{\rm vap}$ and $\varepsilon^*_{\rm liq} \neq \varepsilon^*_{\rm vap}$ (first order phase transition) then $c^{\rm eq}(\tau,\varepsilon) > 0$.

$$(c^{eq})^{2} \stackrel{\text{def}}{=} \tau^{2} \left(P^{eq} \left. \frac{\partial P^{eq}}{\partial \varepsilon} \right|_{\tau} - \left. \frac{\partial P^{eq}}{\partial \tau} \right|_{\varepsilon} \right) = \underbrace{-\tau^{2} T^{eq}}_{\mathcal{V}} \underbrace{\left[P^{eq}, -1 \right] \left[\begin{array}{c} s^{eq}_{\varepsilon \varepsilon} & s^{eq}_{\tau \varepsilon} \\ s^{eq}_{\tau \varepsilon} & s^{eq}_{\tau \tau} \end{array} \right] \left[\begin{array}{c} P^{eq}_{\tau} \\ -1 \end{array} \right]}_{\mathcal{V}} \leq 0$$

Hessian matrix of
$$(au, arepsilon) \mapsto s^{
m eq}$$

• for all (τ, ε) pure phase state

$$\mathbf{v}^T \, \mathrm{d}^2 s^{\mathrm{eq}}(au, arepsilon) \, \mathbf{v} < \mathbf{0} \quad \forall \, \mathbf{v} \neq \mathbf{0},$$

• for all (τ, ε) equilibrium mixture state

$$\exists \mathbf{v}(\tau,\varepsilon) \neq \mathbf{0} \text{ s.t. } \mathbf{v}^T d^2 s^{eq}(\tau,\varepsilon) \mathbf{v} = \mathbf{0}.$$

Theorem

If $\tau^*_{\text{liq}} \neq \tau^*_{\text{vap}}$ and $\varepsilon^*_{\text{liq}} \neq \varepsilon^*_{\text{vap}}$ (first order phase transition) then $c^{\text{eq}}(\tau, \varepsilon) > 0$.

$$(c^{\text{eq}})^{2} \stackrel{\text{def}}{=} \tau^{2} \left(P^{\text{eq}} \left. \frac{\partial P^{\text{eq}}}{\partial \varepsilon} \right|_{\tau} - \left. \frac{\partial P^{\text{eq}}}{\partial \tau} \right|_{\varepsilon} \right) = \underbrace{-\tau^{2} T^{\text{eq}}}^{\aleph} \underbrace{\left[P^{\text{eq}}, -1 \right] \left[\begin{array}{c} s_{\varepsilon\varepsilon}^{\text{eq}} & s_{\tau\varepsilon}^{\text{eq}} \\ s_{\tau\varepsilon}^{\text{eq}} & s_{\tau\tau}^{\text{eq}} \end{array} \right] \left[\begin{array}{c} P^{\text{eq}} \\ -1 \end{array} \right]}^{\leq 0}$$

Hessian matrix of
$$(au, arepsilon) \mapsto s^{eq}$$

• for all (τ, ε) pure phase state

$$\mathbf{v}^T \, \mathrm{d}^2 s^{\mathrm{eq}}(au, arepsilon) \, \mathbf{v} < \mathbf{0} \quad orall \, \mathbf{v}
eq \mathbf{0},$$

• for all (τ, ε) equilibrium mixture state

$$\exists \mathbf{v}(\tau,\varepsilon) \neq \mathbf{0} \text{ s.t. } \mathbf{v}^T d^2 s^{eq}(\tau,\varepsilon) \mathbf{v} = \mathbf{0}.$$

 $\forall (\tau, \varepsilon)$ equilibrium mixture state, $\mathbf{v}(\tau, \varepsilon) \stackrel{?}{\equiv} [P^{eq}(\tau, \varepsilon), -1]$

Theorem

If $\tau^*_{\text{liq}} \neq \tau^*_{\text{vap}}$ and $\varepsilon^*_{\text{liq}} \neq \varepsilon^*_{\text{vap}}$ (first order phase transition) then $c^{\text{eq}}(\tau, \varepsilon) > 0$.

$$(c^{\text{eq}})^{2} \stackrel{\text{def}}{=} \tau^{2} \left(P^{\text{eq}} \left. \frac{\partial P^{\text{eq}}}{\partial \varepsilon} \right|_{\tau} - \left. \frac{\partial P^{\text{eq}}}{\partial \tau} \right|_{\varepsilon} \right) = \underbrace{-\tau^{2} T^{\text{eq}}}^{\aleph} \underbrace{\left[P^{\text{eq}}, -1 \right] \left[\begin{array}{c} s_{\varepsilon\varepsilon}^{\text{eq}} & s_{\tau\varepsilon}^{\text{eq}} \\ s_{\tau\varepsilon}^{\text{eq}} & s_{\tau\tau}^{\text{eq}} \end{array} \right] \left[\begin{array}{c} P^{\text{eq}} \\ -1 \end{array} \right]}^{\leq 0}$$

Hessian matrix of
$$(au, arepsilon) \mapsto s^{eq}$$

• for all (τ, ε) pure phase state

$$\mathbf{v}^T \, \mathrm{d}^2 s^{\mathrm{eq}}(au, arepsilon) \, \mathbf{v} < \mathbf{0} \quad \forall \, \mathbf{v} \neq \mathbf{0},$$

• for all (τ, ε) equilibrium mixture state

$$\exists \mathbf{v}(\tau,\varepsilon) \neq \mathbf{0} \text{ s.t. } \mathbf{v}^T d^2 s^{eq}(\tau,\varepsilon) \mathbf{v} = \mathbf{0}.$$

 $\forall (\tau, \varepsilon)$ equilibrium mixture state, $\mathbf{v}(\tau, \varepsilon) \stackrel{?}{\asymp} [P^{eq}(\tau, \varepsilon), -1]$

OUTLINE

Context

2 Model

- Governing equations
- Equation of State

3 Numerical Approximation and Example

- Conservation Laws
- Numerical Scheme
- Numerical Example

OUTLINE

Context

Model

- Governing equations
- Equation of State

Output: State Approximation and Example

- Conservation Laws
- Numerical Scheme
- Numerical Example

• Conclusion

DYNAMIC LIQUID-VAPOR PHASE CHANGE

EULER SYSTEM

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0, \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + \boldsymbol{P^{eq}} \mathbb{I}) = 0 \\ \partial_t \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \right) + \operatorname{div} \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \mathbf{u} + \boldsymbol{P^{eq}} \mathbf{u} \right) = 0 \end{cases} \text{ with } \boldsymbol{P^{eq} \stackrel{\text{def}}{=}} \frac{\boldsymbol{S_r^{eq}}}{\boldsymbol{S_\varepsilon^{eq}}}.$$

MATHEMATICAL PROPERTIES

If $\tau_{\text{lig}}^* \neq \tau_{\text{vap}}^*$ and $\varepsilon_{\text{lig}}^* \neq \varepsilon_{\text{vap}}^*$ (first order phase transition) then

Euler system: strict hyperbolicity (+ p-system),

 Riemann problem: multitude of entropy (Lax) solutions [R Mexicos, 8.3. Provid uniqueness of Liu solution.

DYNAMIC LIQUID-VAPOR PHASE CHANGE

EULER SYSTEM

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0, \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + \boldsymbol{P^{eq}} \mathbb{I}) = 0 \\ \partial_t \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \right) + \operatorname{div} \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \mathbf{u} + \boldsymbol{P^{eq}} \mathbf{u} \right) = 0 \end{cases} \text{ with } \boldsymbol{P^{eq} \stackrel{\text{def}}{=}} \frac{\boldsymbol{s_\tau^{eq}}}{\boldsymbol{s_\varepsilon^{eq}}}.$$

MATHEMATICAL PROPERTIES

- If $\tau_{\text{liq}}^* \neq \tau_{\text{vap}}^*$ and $\varepsilon_{\text{liq}}^* \neq \varepsilon_{\text{vap}}^*$ (first order phase transition) then
 - Euler system: strict hyperbolicity (\neq p-system),
 - Riemann problem: multitude of entropy (Lax) solutions [R. MENIKOFF, B. J. PLOHR], uniqueness of Liu solution.

DYNAMIC LIQUID-VAPOR PHASE CHANGE

EULER SYSTEM

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0, \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + \boldsymbol{P^{eq}} \mathbb{I}) = 0 \\ \partial_t \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \right) + \operatorname{div} \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \mathbf{u} + \boldsymbol{P^{eq}} \mathbf{u} \right) = 0 \end{cases} \text{ with } \boldsymbol{P^{eq} \stackrel{\text{def}}{=} \frac{\boldsymbol{S_{\tau}^{eq}}}{\boldsymbol{S_{\varepsilon}^{eq}}}.$$

MATHEMATICAL PROPERTIES

- If $\tau^*_{\rm liq} \neq \tau^*_{\rm vap}$ and $\varepsilon^*_{\rm liq} \neq \varepsilon^*_{\rm vap}$ (first order phase transition) then
 - **0** Euler system: strict hyperbolicity (\neq p-system),
 - Riemann problem: multitude of entropy (Lax) solutions [R. MENIKOFF, B. J. PLOHR], uniqueness of Liu solution.

OUTLINE

Context

2 Model

- Governing equations
- Equation of State

Output: Section 2 Numerical Approximation and Example

- Conservation Laws
- Numerical Scheme
- Numerical Example

Conclusion

Two Steps:

Hydrodynamic (+ gravity, surface tension, heat diffusion, ...)

Projection by solving the Phase-Change Equation

G. FACCANONI (Université du Sud Toulon-Var)

Two Steps:

Hydrodynamic (+ gravity, surface tension, heat diffusion, ...

Projection by solving the Phase-Change Equation

G. FACCANONI (Université du Sud Toulon-Var)

OFF EQUILIBRIUM SYSTEMS

- Lagrangian: $\mathcal{L}(\varrho, \mathbf{u}, \sigma, y, z, \psi) \stackrel{\text{def}}{=} \varrho \left(\frac{|\mathbf{u}|^2}{2} \varepsilon(\varrho, \sigma, y, z, \psi) \right)$ Action: $\mathcal{A}(\nu) \stackrel{\text{def}}{=} \int_{t_1}^{t_2} \int \mathcal{L}(\widehat{\varrho}, \widehat{\varrho} \widehat{\mathbf{u}}, \widehat{s}, \widehat{y}, \widehat{z}, \widehat{\psi}) (\widehat{\mathbf{x}}, t; \nu) \, \mathrm{d} \, \widehat{\mathbf{x}} \, \mathrm{d} \, t$ Minimization of the Action: $\frac{\mathrm{d} \, \mathcal{A}}{\mathrm{d} \, \nu} (\nu = 0) = 0$ • Energy: $\varepsilon \stackrel{\text{def}}{=} \sum_{\alpha} y_{\alpha} \varepsilon_{\alpha} \left(\frac{z_{\alpha}}{y_{\alpha}} \frac{1}{\varrho}, \frac{\psi_{\alpha}}{y_{\alpha}} \sigma \right)$
- 3 Positive Entropy Production: $D_t \sigma \ge 0$

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0\\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0\\ \partial_t(\varrho e) + \operatorname{div}((\varrho e + P)\mathbf{u}) = 0\\ \partial_t z + \mathbf{u} \cdot \operatorname{\mathbf{grad}} z = \mu_z(z^{\operatorname{eq}} - z)\\ \partial_t y + \mathbf{u} \cdot \operatorname{\mathbf{grad}} y = \mu_y(y^{\operatorname{eq}} - y)\\ \partial_t \psi + \mathbf{u} \cdot \operatorname{\mathbf{grad}} \psi = \mu_\psi(\psi^{\operatorname{eq}} - \psi)\\ P(\varrho, \varepsilon, z, y, \psi) = \frac{\sigma_\tau}{\sigma_\varepsilon} \end{cases}$$

 $\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0\\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0\\ \partial_t(\varrho e) + \operatorname{div}((\varrho e + P)\mathbf{u}) = 0\\ \partial_t z + \mathbf{u} \cdot \operatorname{\mathbf{grad}} z = \mu_z(z^{\operatorname{eq}} - z)\\ \partial_t y + \mathbf{u} \cdot \operatorname{\mathbf{grad}} y = \mu_y(y^{\operatorname{eq}} - y) \end{cases}$ $T^{\operatorname{liq}} = T^{\operatorname{vap}} \text{ in the mixture} \\ P(\tau, \varepsilon, z, y, \psi^{\operatorname{eq}}(\tau, \varepsilon)) = \frac{\sigma_\tau}{\sigma_z} \end{cases}$

OFF EQUILIBRIUM SYSTEMS

- Lagrangian: $\mathcal{L}(\varrho, \mathbf{u}, \sigma, y, z, \psi) \stackrel{\text{def}}{=} \varrho \left(\frac{|\mathbf{u}|^2}{2} \varepsilon(\varrho, \sigma, y, z, \psi) \right)$ Action: $\mathcal{A}(\nu) \stackrel{\text{def}}{=} \int_{t_1}^{t_2} \int_{\widehat{\Omega}(t;\nu)} \mathcal{L}(\widehat{\varrho}, \widehat{\varrho}\widehat{\mathbf{u}}, \widehat{s}, \widehat{y}, \widehat{z}, \widehat{\psi})(\widehat{\mathbf{x}}, t; \nu) \, \mathrm{d}\,\widehat{\mathbf{x}} \, \mathrm{d}\, t$ Minimization of the Action: $\frac{\mathrm{d}\mathcal{A}}{\mathrm{d}\nu}(\nu = 0) = 0$ • Energy: $\varepsilon \stackrel{\text{def}}{=} \sum_{\alpha} y_{\alpha} \varepsilon_{\alpha} \left(\frac{z_{\alpha}}{y_{\alpha}} \frac{1}{\varrho}, \frac{\psi_{\alpha}}{y_{\alpha}} \sigma \right)$
- Solution: $D_t \sigma \ge 0$

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0\\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0\\ \partial_t(\varrho e) + \operatorname{div}((\varrho e + P)\mathbf{u}) = 0\\ \partial_t z + \mathbf{u} \cdot \operatorname{grad} z = \mu_z(z^{\operatorname{eq}} - z)\\ \partial_t y + \mathbf{u} \cdot \operatorname{grad} y = \mu_y(y^{\operatorname{eq}} - y)\\ \partial_t \psi + \mathbf{u} \cdot \operatorname{grad} \psi = \mu_\psi(\psi^{\operatorname{eq}} - \psi) \end{cases}$$
$$P(\varrho, \varepsilon, z, y, \psi) = \frac{\sigma_\tau}{\sigma_\varepsilon}$$

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0\\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0\\ \partial_t(\varrho e) + \operatorname{div}((\varrho e + P)\mathbf{u}) = 0\\ \partial_t z + \mathbf{u} \cdot \operatorname{\mathbf{grad}} z = \mu_z(z^{\operatorname{eq}} - z)\\ \partial_t y + \mathbf{u} \cdot \operatorname{\mathbf{grad}} y = \mu_y(y^{\operatorname{eq}} - y) \end{cases}$$
$$T^{\operatorname{liq}} = T^{\operatorname{vep}} \text{ in the mixture}$$

$$P(\tau,\varepsilon,z,y,\psi^{\rm eq}(\tau,\varepsilon)) = \frac{\sigma_{\tau}}{\sigma_{\varepsilon}}$$

HYDRODYNAMIC STEP

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0\\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0\\ \partial_t(\varrho e) + \operatorname{div}((\varrho e + P)\mathbf{u}) = 0\\ \partial_t z + \mathbf{u} \cdot \operatorname{\mathbf{grad}} z = 0\\ \partial_t y + \mathbf{u} \cdot \operatorname{\mathbf{grad}} y = 0\\ T^{\operatorname{liq}} = T^{\operatorname{vap}} \text{ in the mixture}\\ P(\varrho, \varepsilon, z, y) = \frac{\sigma_\tau}{\sigma_\varepsilon} \end{cases}$$

Scheme: Roe quasi-conservative [S. Kokh] $\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0\\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0\\ \partial_t(\varrho e) + \operatorname{div}((\varrho e + P)\mathbf{u}) = 0\\ \partial_t z + \mathbf{u} \cdot \operatorname{\mathbf{grad}} z = 0\\ \partial_t y + \mathbf{u} \cdot \operatorname{\mathbf{grad}} y = 0 \end{cases}$ $P^{\operatorname{liq}} = P^{\operatorname{vap}} \text{ in the mixture} \\ P(\varrho, \varepsilon, z, y) = \frac{\sigma_\tau}{\sigma_\varepsilon}$

Scheme: antidiffusive [Lagoutière and Kokh]

HYDRODYNAMIC STEP

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0\\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0\\ \partial_t(\varrho e) + \operatorname{div}((\varrho e + P)\mathbf{u}) = 0\\ \partial_t z + \mathbf{u} \cdot \operatorname{\mathbf{grad}} z = 0\\ \partial_t y + \mathbf{u} \cdot \operatorname{\mathbf{grad}} y = 0 \end{cases}$$
$$T^{\text{liq}} = T^{\text{vap}} \text{ in the mixture} \\ P(\varrho, \varepsilon, z, y) = \frac{\sigma_\tau}{\sigma_\varepsilon} \end{cases}$$

Scheme: Roe quasi-conservative [S. Kokh]

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0\\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0\\ \partial_t(\varrho e) + \operatorname{div}((\varrho e + P)\mathbf{u}) = 0\\ \partial_t z + \mathbf{u} \cdot \operatorname{\mathbf{grad}} z = 0\\ \partial_t y + \mathbf{u} \cdot \operatorname{\mathbf{grad}} y = 0 \end{cases}$$

$$\mathsf{P}^{\mathsf{liq}} = \mathsf{P}^{\mathsf{vap}} \text{ in the mixture}$$

$$\mathsf{P}(\varrho, \varepsilon, z, y) = \frac{\sigma_\tau}{\sigma_\varepsilon}$$

Scheme: antidiffusive [Lagoutière and Kokh]

PROJECTION STEP

In each cell, (τ, ε) is computed in the hydrodynamic step and we update the fractions as follows:

1. T^* : solution of the Phase-Change Equation:

$$\frac{\tau - \tau_{vap}(T, P^{sat}(T))}{\tau_{liq}(T, P^{sat}(T)) - \tau_{vap}(T, P^{sat}(T))} = \frac{\varepsilon - \varepsilon_{vap}(T, P^{sat}(T))}{\varepsilon_{liq}(T, P^{sat}(T)) - \varepsilon_{vap}(T, P^{sat}(T))}$$

2. $\tau_{\alpha}^* \stackrel{\text{def}}{=} \tau_{\alpha}(T^*, P^{\text{sat}}(T^*)), \quad \varepsilon_{\alpha}^* \stackrel{\text{def}}{=} \varepsilon_{\alpha}(T^*, P^{\text{sat}}(T^*)), \quad y^* = y(T^*, P^{\text{sat}}(T^*)).$ 3. 3.1. if $0 < y^* < 1$ then (τ, ε) is a saturated state and we set

$$y^{\mathrm{eq}} = y^*, \qquad \qquad z^{\mathrm{eq}} = y^* \tau^*_{\mathrm{liq}} / \tau, \qquad \qquad \psi^{\mathrm{eq}} = y^* \varepsilon^*_{\mathrm{liq}} / \varepsilon,$$

3.2. otherwise, if y^* is outside the range (0, 1), 3.2.1. if $s_{\text{liq}}(\tau, \varepsilon) > s_{\text{vap}}(\tau, \varepsilon)$ then (τ, ε) is a liquid state, therefore we set $y^{\text{eq}}(\tau, \varepsilon) = 1$, $z^{\text{eq}}(\tau, \varepsilon) = 1$, $\psi^{\text{eq}}(\tau, \varepsilon) = 1$,

3.2.2. if $s_{\text{liq}}(\tau, \varepsilon) < s_{\text{vap}}(\tau, \varepsilon)$ then τ, ε is a vapor state, therefore we set $y^{\text{eq}}(\tau, \varepsilon) = 0, \qquad z^{\text{eq}}(\tau, \varepsilon) = 0, \qquad \psi^{\text{eq}}(\tau, \varepsilon) = 0,$

OUTLINE

Context

Model

- Governing equations
- Equation of State

Output: Section 2 Numerical Approximation and Example

- Conservation Laws
- Numerical Scheme
- Numerical Example

Conclusion

OUTLINE

Context

2 Model

- Governing equations
- Equation of State

3 Numerical Approximation and Example

- Conservation Laws
- Numerical Scheme
- Numerical Example

Onclusion

Model

 based on a general construction of the Equilibrium EOS (also for tabulated data),

• Numerical Method based on the relaxation approach: off-equilibrium systems with relaxation terms

preliminary results: dynamic generation of a phase in a 2D-flow in a pure phase with surface tension, gravity and heat diffusion,

 \checkmark transition: liquid phase ightarrow nucleating boiling ightarrow "film" boiling

Model

 based on a general construction of the Equilibrium EOS (also for tabulated data),

- Numerical Method based on the relaxation approach: off-equilibrium systems with relaxation terms
 - preliminary results: dynamic generation of a phase in a 2D-flow in a pure phase with surface tension, gravity and heat diffusion,
 - \checkmark transition: liquid phase \rightarrow nucleating boiling \rightarrow "film" boiling

Model

- based on a general construction of the Equilibrium EOS (also for tabulated data),
- X Critical Point and Metastability;
- Numerical Method based on the relaxation approach: off-equilibrium systems with relaxation terms
 - preliminary results: dynamic generation of a phase in a 2D-flow in a pure phase with surface tension, gravity and heat diffusion,
 - \checkmark transition: liquid phase \rightarrow nucleating boiling \rightarrow "film" boiling

Model

- based on a general construction of the Equilibrium EOS (also for tabulated data),
- X Critical Point and Metastability;
- Numerical Method based on the relaxation approach: off-equilibrium systems with relaxation terms
 - ✓ preliminary results: dynamic generation of a phase in a 2D-flow in a pure phase with surface tension, gravity and heat diffusion,
 - \checkmark transition: liquid phase \rightarrow nucleating boiling \rightarrow "film" boiling
 - X quantitative simulations: tabulated EOS for pure phases, implicit transport step or Adam-Bashfort refinement (CFL condition), 3D (parallelization).

Appendix

- From $\mathbf{w} \mapsto s^{eq}$ to $\mathbf{w} \mapsto P^{eq}$
- Projection step with analytical EOS
- Projection step with tabulated EOS
- Stiffened Gas for Water
- Tabulated EOS for Water
- 🕑 Isentropic Curves
- Surface Tension
- 🕑 Metastability
- Critical Point
- 💽 Summary & To Do

From $\mathbf{w} \mapsto s^{\text{eq}}$ to $\mathbf{w} \mapsto P^{\text{eq}}$

For all $\tilde{\mathbf{w}}$ fixed, we seek $(\mathbf{w}_{liq}^*, \mathbf{w}_{vap}^*, y^*)$ as the solution of the system

$$\begin{cases} P_{\text{liq}}(\mathbf{w}_{\text{liq}}) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ T_{\text{liq}}(\mathbf{w}_{\text{liq}}) = T_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ g_{\text{liq}}(\mathbf{w}_{\text{liq}}) = g_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ \widetilde{\mathbf{w}} = y \mathbf{w}_{\text{liq}} + (1 - y) \mathbf{w}_{\text{va}} \end{cases}$$

• if $y^* \in]0,1[$ then \tilde{w} is an equilibrium mixture state

 $s^{\text{eq}}(\widetilde{\mathbf{w}}) = y^* s_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) + (1 - y^*) s_{\text{vap}}(\mathbf{w}_{\text{vap}}^*),$

If the system has no solution or y^{*} ∉]0, 1[then w is a monophasic pure state

$$s^{ ext{eq}}(\widetilde{\mathbf{w}}) = \max\{s_{ ext{liq}}(\widetilde{\mathbf{w}}), s_{ ext{vap}}(\widetilde{\mathbf{w}})\}, P^{ ext{out}}(\mathbf{w}) = P_{ ext{vap}}(\mathbf{w})$$

From $\mathbf{w} \mapsto s^{\text{eq}}$ to $\mathbf{w} \mapsto P^{\text{eq}}$

For all $\tilde{\mathbf{w}}$ fixed, we seek $(\mathbf{w}_{liq}^*, \mathbf{w}_{vap}^*, y^*)$ as the solution of the system

$$\begin{cases} P_{\text{liq}}(\mathbf{w}_{\text{liq}}) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ T_{\text{liq}}(\mathbf{w}_{\text{liq}}) = T_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ g_{\text{liq}}(\mathbf{w}_{\text{liq}}) = g_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ \widetilde{\mathbf{w}} = y \mathbf{w}_{\text{liq}} + (1 - y) \mathbf{w}_{\text{va}} \end{cases}$$

() if $y^* \in]0, 1[$ then \tilde{w} is an equilibrium mixture state

$$\begin{split} s^{\text{eq}}(\widetilde{\mathbf{w}}) &= y^* s_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) + (1 - y^*) s_{\text{vap}}(\mathbf{w}_{\text{vap}}^*), \\ P^{\text{eq}}(\widetilde{\mathbf{w}}) &= P_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}^*); \end{split}$$

● if the system has no solution or y* ∉]0, 1[then w is a monophasic pure state

$$s^{ ext{eq}}(\widetilde{\mathbf{w}}) = \max\{s_{ ext{liq}}(\widetilde{\mathbf{w}}), s_{ ext{vap}}(\widetilde{\mathbf{w}})\}, P^{ ext{vap}}(\mathbf{w}) = P_{ ext{vap}}(\mathbf{w})$$

From $\mathbf{w} \mapsto s^{\text{eq}}$ to $\mathbf{w} \mapsto P^{\text{eq}}$

For all $\tilde{\mathbf{w}}$ fixed, we seek $(\mathbf{w}_{liq}^*, \mathbf{w}_{vap}^*, y^*)$ as the solution of the system

$$\begin{cases} P_{\text{liq}}(\mathbf{w}_{\text{liq}}) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ T_{\text{liq}}(\mathbf{w}_{\text{liq}}) = T_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ g_{\text{liq}}(\mathbf{w}_{\text{liq}}) = g_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ \widetilde{\mathbf{w}} = y \mathbf{w}_{\text{liq}} + (1 - y) \mathbf{w}_{\text{va}} \end{cases}$$

() if $y^* \in [0, 1[$ then \widetilde{w} is an equilibrium mixture state

$$\begin{split} s^{\text{eq}}(\widetilde{\mathbf{w}}) &= y^* s_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) + (1 - y^*) s_{\text{vap}}(\mathbf{w}_{\text{vap}}^*), \\ P^{\text{eq}}(\widetilde{\mathbf{w}}) &= P_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}^*); \end{split}$$

● if the system has no solution or y* ∉]0,1[then w̃ is a monophasic pure state

$$s^{\mathrm{eq}}(\widetilde{\mathbf{w}}) = \max\{s_{\mathrm{liq}}(\widetilde{\mathbf{w}}), s_{\mathrm{vap}}(\widetilde{\mathbf{w}})\},\ P^{\mathrm{eq}}(\widetilde{\mathbf{w}}) = P_{\alpha}(\widetilde{\mathbf{w}}).$$

From $\mathbf{w} \mapsto s^{\text{eq}}$ to $\mathbf{w} \mapsto P^{\text{eq}}$

For all $\tilde{\mathbf{w}}$ fixed, we seek $(\mathbf{w}_{liq}^*, \mathbf{w}_{vap}^*, y^*)$ as the solution of the system

$$\begin{cases} P_{\text{liq}}(\mathbf{w}_{\text{liq}}) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ T_{\text{liq}}(\mathbf{w}_{\text{liq}}) = T_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ g_{\text{liq}}(\mathbf{w}_{\text{liq}}) = g_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ \widetilde{\mathbf{w}} = y \mathbf{w}_{\text{liq}} + (1 - y) \mathbf{w}_{\text{va}} \end{cases}$$

() if $y^* \in [0, 1[$ then \widetilde{w} is an equilibrium mixture state

$$s^{\text{eq}}(\widetilde{\mathbf{w}}) = y^* s_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) + (1 - y^*) s_{\text{vap}}(\mathbf{w}_{\text{vap}}^*),$$

$$P^{\text{eq}}(\widetilde{\mathbf{w}}) = P_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}^*);$$

● if the system has no solution or y* ∉]0,1[then w̃ is a monophasic pure state

$$s^{\mathrm{eq}}(\widetilde{\mathbf{w}}) = \max\{s_{\mathrm{liq}}(\widetilde{\mathbf{w}}), s_{\mathrm{vap}}(\widetilde{\mathbf{w}})\}, P^{\mathrm{eq}}(\widetilde{\mathbf{w}}) = P_{\alpha}(\widetilde{\mathbf{w}}).$$

From $\mathbf{w} \mapsto s^{\text{eq}}$ to $\mathbf{w} \mapsto P^{\text{eq}}$

For all $\tilde{\mathbf{w}}$ fixed, we seek $(\mathbf{w}_{liq}^*, \mathbf{w}_{vap}^*, y^*)$ as the solution of the system

$$\begin{cases} P_{\text{liq}}(\mathbf{w}_{\text{liq}}) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ T_{\text{liq}}(\mathbf{w}_{\text{liq}}) = T_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ g_{\text{liq}}(\mathbf{w}_{\text{liq}}) = g_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ \widetilde{\mathbf{w}} = y \mathbf{w}_{\text{liq}} + (1 - y) \mathbf{w}_{\text{va}} \end{cases}$$

() if $y^* \in [0, 1[$ then \widetilde{w} is an equilibrium mixture state

$$\begin{split} s^{\text{eq}}(\widetilde{\mathbf{w}}) &= y^* s_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) + (1 - y^*) s_{\text{vap}}(\mathbf{w}_{\text{vap}}^*), \\ P^{\text{eq}}(\widetilde{\mathbf{w}}) &= P_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}^*); \end{split}$$

● if the system has no solution or y* ∉]0,1[then w̃ is a monophasic pure state

$$s^{\text{eq}}(\widetilde{\mathbf{w}}) = \max\{s_{\text{liq}}(\widetilde{\mathbf{w}}), s_{\text{vap}}(\widetilde{\mathbf{w}})\},\ P^{\text{eq}}(\widetilde{\mathbf{w}}) = P_{\alpha}(\widetilde{\mathbf{w}}).$$

PROJECTION STEP: ANALYTICAL EOS

(au, arepsilon) fixed

$$\begin{array}{l} \left(\tau_{\mathrm{liq}}, \varepsilon_{\mathrm{liq}}, \tau_{\mathrm{vap}}, \varepsilon_{\mathrm{vap}}, y\right) \text{ SOLUTION OF} \\ \left\{\begin{array}{l} P_{\mathrm{liq}}(\tau_{\mathrm{liq}}, \varepsilon_{\mathrm{liq}}) = P_{\mathrm{vap}}(\tau_{\mathrm{vap}}, \varepsilon_{\mathrm{vap}}) \\ T_{\mathrm{liq}}(\tau_{\mathrm{liq}}, \varepsilon_{\mathrm{liq}}) = T_{\mathrm{vap}}(\tau_{\mathrm{vap}}, \varepsilon_{\mathrm{vap}}) \\ g_{\mathrm{liq}}(\tau_{\mathrm{liq}}, \varepsilon_{\mathrm{liq}}) = g_{\mathrm{vap}}(\tau_{\mathrm{vap}}, \varepsilon_{\mathrm{vap}}) \\ \tau = y\tau_{\mathrm{liq}} + (1 - y)\tau_{\mathrm{vap}} \\ \varepsilon = y\varepsilon_{\mathrm{liq}} + (1 - y)\varepsilon_{\mathrm{vap}} \end{array} \right) \\ \left\{\begin{array}{l} \tau = \tau_{\alpha}(P, T) \\ \varepsilon_{\alpha} = \varepsilon_{\alpha}(P, T) \\ g_{\mathrm{liq}}(P, T) = g_{\mathrm{vap}}(P, T) \\ \tau = \tau_{\mathrm{vap}}(P, T) \\ \tau_{\mathrm{liq}}(P, T) - \tau_{\mathrm{vap}}(P, T) \end{array} \right\} \\ \left\{\begin{array}{l} \tau - \tau_{\mathrm{vap}}(P, T) \\ \varepsilon_{\mathrm{liq}}(P, T) - \varepsilon_{\mathrm{vap}}(P, T) \\ \tau_{\mathrm{vap}}(P, T) \end{array} \right\} \\ T \mapsto P = P^{\mathrm{sat}}(T) \\ \left\{\begin{array}{l} \tau \to P^{\mathrm{sat}}(T) \\ \tau_{\mathrm{sat}}^{\mathrm{sat}}(T) - \tau_{\mathrm{vap}}^{\mathrm{sat}}(T) \end{array} \right\} \\ \left\{\begin{array}{l} \tau \to \varepsilon_{\mathrm{vap}}(P, T) \\ \varepsilon_{\mathrm{liq}}(P, T) - \varepsilon_{\mathrm{vap}}(P, T) \end{array} \right\} \\ to evalue \\ \left\{\begin{array}{l} \tau \to \tau_{\mathrm{vap}}(P, T) \\ \varepsilon_{\mathrm{liq}}(P, T) - \varepsilon_{\mathrm{vap}}(P, T) \end{array} \right\} \\ to evalue \\ to evalue \\ to evalue \\ \left\{\begin{array}{l} \tau \to \tau_{\mathrm{vap}}^{\mathrm{sat}}(T) \\ \varepsilon_{\mathrm{vap}}^{\mathrm{sat}}(T) \end{array} \right\} \\ to evalue \\ to$$

PROJECTION STEP: ANALYTICAL EOS

(au, arepsilon) fixed

$$\begin{array}{c} (\tau_{\mathrm{liq}}, \varepsilon_{\mathrm{liq}}, \tau_{\mathrm{vap}}, \varepsilon_{\mathrm{vap}}, y) \text{ solution of} \\ \begin{cases} P_{\mathrm{liq}}(\tau_{\mathrm{liq}}, \varepsilon_{\mathrm{liq}}) = P_{\mathrm{vap}}(\tau_{\mathrm{vap}}, \varepsilon_{\mathrm{vap}}) \\ T_{\mathrm{liq}}(\tau_{\mathrm{liq}}, \varepsilon_{\mathrm{liq}}) = T_{\mathrm{vap}}(\tau_{\mathrm{vap}}, \varepsilon_{\mathrm{vap}}) \\ g_{\mathrm{liq}}(\tau_{\mathrm{liq}}, \varepsilon_{\mathrm{liq}}) = g_{\mathrm{vap}}(\tau_{\mathrm{vap}}, \varepsilon_{\mathrm{vap}}) \\ \tau = y\tau_{\mathrm{liq}} + (1 - y)\tau_{\mathrm{vap}} \\ \varepsilon = y\varepsilon_{\mathrm{liq}} + (1 - y)\varepsilon_{\mathrm{vap}} \end{cases} \\ \hline T \text{ solution of} \\ \hline T \text{ solution$$

PROJECTION STEP: TABULATED EOS

		Internal I	Energy			
		(m ³ kg	J ^{−1})	$(kJ kg^{-1})$		
<i>T</i> (K)	P ^{sat} (MPa)	$ au_{ m liq}^{ m sat}$	$ au_{ m vap}^{ m sat}$	ε_{liq}^{sat}	$\varepsilon_{\mathrm{vap}}^{\mathrm{sat}}$	
275	0,00069845	0,0010001	181,60	7,7590	2377,5	
278	0,00086349	0,0010001	148,48	20,388	2381,6	
281	0,0010621	0,0010002	122,01	32,996	2385,7	
284	0,0012999	0,0010004	100,74	45,586	2389,8	
287	0,0015835	0,0010008	83,560	58,162	2393,9	
290	0,0019200	0,0010012	69,625	70,727	2398,0	
293	0,0023177	0,0010018	58,267	83,284	2402,1	
296	0,0027856	0,0010025	48,966	95,835	2406,2	
299	0,0033342	0,0010032	41,318	108,38	2410,3	
302	0,0039745	0,0010041	35,002	120,92	2414,4	
305	0,0047193	0,0010050	29,764	133,46	2418,4	
308	0,0055825	0,0010060	25,403	146	2422,5	

Source: http://webbook.nist.gov/chemistry/fluid/

PROJECTION STEP: TABULATED EOS

 (τ, ε) fixed T SOLUTION OF $\frac{\tau - \tau_{\text{vap}}^{\text{sat}}(T)}{\tau_{\text{lig}}^{\text{sat}}(T) - \tau_{\text{vap}}^{\text{sat}}(T)} = \frac{\varepsilon - \varepsilon_{\text{vap}}^{\text{sat}}(T)}{\varepsilon_{\text{lig}}^{\text{sat}}(T) - \varepsilon_{\text{vap}}^{\text{sat}}(T)} \quad \text{with} \quad \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\text{sat}}(T) \quad \text{tabulated}$

PROJECTION STEP: TABULATED EOS

 (τ, ε) fixed T SOLUTION OF $\frac{\tau - \tau_{\rm vap}^{\rm sat}(T)}{\tau_{\rm lig}^{\rm sat}(T) - \tau_{\rm vap}^{\rm sat}(T)} = \frac{\varepsilon - \varepsilon_{\rm vap}^{\rm sat}(T)}{\varepsilon_{\rm lig}^{\rm sat}(T) - \varepsilon_{\rm vap}^{\rm sat}(T)}$ with $\begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}^{\text{sat}}(T)$ tabulated ?? ← with $\left(\begin{array}{c} \widehat{\tau} \\ \widehat{\varepsilon} \end{array} \right)^{\text{sat}} (T)$

least square approximations

PROJECTION STEP: TABULATED EOS

 (τ, ε) fixed T SOLUTION OF $\frac{\tau - \tau_{\text{vap}}^{\text{sat}}(T)}{\tau_{\text{lig}}^{\text{sat}}(T) - \tau_{\text{vap}}^{\text{sat}}(T)} = \frac{\varepsilon - \varepsilon_{\text{vap}}^{\text{sat}}(T)}{\varepsilon_{\text{lig}}^{\text{sat}}(T) - \varepsilon_{\text{vap}}^{\text{sat}}(T)} \quad \text{with} \quad \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\text{sat}}(T) \quad \text{tabulated}$ // ← $\frac{\tau - \widehat{\tau}_{\mathsf{vap}}^{\mathsf{sat}}(\mathsf{T})}{\widehat{\tau}_{\mathsf{lig}}^{\mathsf{sat}}(\mathsf{T}) - \widehat{\tau}_{\mathsf{vap}}^{\mathsf{sat}}(\mathsf{T})} = \frac{\varepsilon - \widehat{\varepsilon}_{\mathsf{vap}}^{\mathsf{sat}}(\mathsf{T})}{\widehat{\varepsilon}_{\mathsf{lig}}^{\mathsf{sat}}(\mathsf{T}) - \widehat{\varepsilon}_{\mathsf{vap}}^{\mathsf{sat}}(\mathsf{T})}$ with $\begin{pmatrix} \hat{\tau} \\ \hat{\varepsilon} \end{pmatrix}^{\text{sat}} (T)$

least square approximations

STIFFENED GAS FOR WATER

Phase	$c_v [\mathrm{Jkg^{-1}K^{-1}}]$	γ	π [Pa]	<i>q</i> [J kg ^{−1}]	$m [J kg^{-1} K^{-1}]$
Water	1816.2	2.35	10^{9}	$-1167.056 imes 10^{3}$	-32765.55596
Steam	1040.14	1.43	0	2030.255×10^3	-33265.65947

Table: Parameters proposed by [O. LE METAYER] for water.

$$(\tau_{\alpha},\varepsilon_{\alpha})\mapsto s_{\alpha}=c_{\nu_{\alpha}}\ln(\varepsilon_{\alpha}-q_{\alpha}-\pi_{\alpha}\tau_{\alpha})+c_{\nu_{\alpha}}(\gamma_{\alpha}-1)\ln\tau_{\alpha}+m_{\alpha}$$

$$(P,T) \mapsto \varepsilon_{\alpha} = c_{v_{\alpha}} T \frac{P + \pi_{\alpha} \gamma_{\alpha}}{P + \pi_{\alpha}} + q_{\alpha}, \qquad (P,T) \mapsto \tau_{\alpha} = c_{v_{\alpha}} (\gamma_{\alpha} - 1) \frac{T}{P + \pi_{\alpha}}.$$
$$T^{i} = 278 \, \mathrm{K} \dots 610 \, \mathrm{K},$$
$$g_{\mathrm{liq}}(P,T^{i}) = g_{\mathrm{vap}}(P,T^{i}) \Rightarrow P^{\mathrm{sat}}(T^{i}) \right\} \Rightarrow \mathfrak{A} = \left\{ \left(T^{i}, P^{\mathrm{sat}}(T^{i})\right)\right\}_{i=0}^{83}$$

 \hat{P}^{sat} defined by using a least square approximation of \mathfrak{A} :

$$T \mapsto P^{\mathrm{sat}}(T) \approx \widehat{P}^{\mathrm{sat}}(T) \stackrel{\mathrm{\tiny def}}{=} \exp\left(\sum_{k=-8}^{k=8} a_k T^k\right)$$

STIFFENED GAS FOR WATER

Phase	$c_v [\mathrm{Jkg^{-1}K^{-1}}]$	γ	π [Pa]	<i>q</i> [J kg ^{−1}]	$m [J kg^{-1} K^{-1}]$
Water	1816.2	2.35	10^{9}	-1167.056×10^{3}	-32765.55596
Steam	1040.14	1.43	0	2030.255×10^3	-33265.65947

Table: Parameters proposed by [O. LE METAYER] for water.

$$(\tau_{\alpha},\varepsilon_{\alpha})\mapsto s_{\alpha}=c_{\nu_{\alpha}}\ln(\varepsilon_{\alpha}-q_{\alpha}-\pi_{\alpha}\tau_{\alpha})+c_{\nu_{\alpha}}(\gamma_{\alpha}-1)\ln\tau_{\alpha}+m_{\alpha}$$

$$(P,T) \mapsto \varepsilon_{\alpha} = c_{\mathbf{v}_{\alpha}} T \frac{P + \pi_{\alpha} \gamma_{\alpha}}{P + \pi_{\alpha}} + q_{\alpha}, \qquad (P,T) \mapsto \tau_{\alpha} = c_{\mathbf{v}_{\alpha}} (\gamma_{\alpha} - 1) \frac{T}{P + \pi_{\alpha}}.$$

$$T^{i} = 278 \, \mathbb{K} \dots 610 \, \mathbb{K},$$

$$\sigma_{i} \cdot (P,T^{i}) = \sigma_{-i} \cdot (P,T^{i}) \Rightarrow P^{\text{sat}}(T^{i}) \Big\} \Rightarrow \mathfrak{A} = \{ (T^{i}, P^{\text{sat}}(T^{i})) \}_{i=0}^{83}$$

 $\widehat{P}^{\mathrm{sat}}$ defined by using a least square approximation of \mathfrak{A} :

$$T \mapsto P^{\mathrm{sat}}(T) \approx \widehat{P}^{\mathrm{sat}}(T) \stackrel{\mathrm{\tiny def}}{=} \exp\left(\sum_{k=-8}^{k=8} a_k T^k\right)$$

STIFFENED GAS FOR WATER

Phase	$c_v [\mathrm{Jkg^{-1}K^{-1}}]$	γ	π [Pa]	<i>q</i> [J kg ^{−1}]	$m [J kg^{-1} K^{-1}]$
Water	1816.2	2.35	10^{9}	-1167.056×10^{3}	-32765.55596
Steam	1040.14	1.43	0	2030.255×10^3	-33265.65947

Table: Parameters proposed by [O. LE METAYER] for water.

$$(\tau_{\alpha},\varepsilon_{\alpha})\mapsto s_{\alpha}=c_{\nu_{\alpha}}\ln(\varepsilon_{\alpha}-q_{\alpha}-\pi_{\alpha}\tau_{\alpha})+c_{\nu_{\alpha}}(\gamma_{\alpha}-1)\ln\tau_{\alpha}+m_{\alpha}$$

$$(P,T) \mapsto \varepsilon_{\alpha} = c_{v_{\alpha}} T \frac{P + \pi_{\alpha} \gamma_{\alpha}}{P + \pi_{\alpha}} + q_{\alpha}, \qquad (P,T) \mapsto \tau_{\alpha} = c_{v_{\alpha}} (\gamma_{\alpha} - 1) \frac{T}{P + \pi_{\alpha}}.$$
$$T^{i} = 278 \, \text{K} \dots 610 \, \text{K}, \\g_{\text{liq}}(P,T^{i}) = g_{\text{vap}}(P,T^{i}) \Rightarrow P^{\text{sat}}(T^{i}) \end{cases} \Rightarrow \mathfrak{A} = \left\{ \left(T^{i}, P^{\text{sat}}(T^{i})\right)\right\}_{i=0}^{83}$$

 P^{sat} defined by using a least square approximation of \mathfrak{A}

$$T \mapsto P^{\mathrm{sat}}(T) \approx \widehat{P}^{\mathrm{sat}}(T) \stackrel{\mathrm{def}}{=} \exp\left(\sum_{k=-8}^{k=8} a_k T^k\right)$$

STIFFENED GAS FOR WATER

Phase	$c_v [\mathrm{Jkg^{-1}K^{-1}}]$	γ	π [Pa]	<i>q</i> [J kg ^{−1}]	$m [J kg^{-1} K^{-1}]$
Water	1816.2	2.35	10^{9}	-1167.056×10^{3}	-32765.55596
Steam	1040.14	1.43	0	2030.255×10^3	-33265.65947

Table: Parameters proposed by [O. LE METAYER] for water.

$$(\tau_{\alpha},\varepsilon_{\alpha})\mapsto s_{\alpha}=c_{\nu_{\alpha}}\ln(\varepsilon_{\alpha}-q_{\alpha}-\pi_{\alpha}\tau_{\alpha})+c_{\nu_{\alpha}}(\gamma_{\alpha}-1)\ln\tau_{\alpha}+m_{\alpha}$$

$$(P,T) \mapsto \varepsilon_{\alpha} = c_{v_{\alpha}} T \frac{P + \pi_{\alpha} \gamma_{\alpha}}{P + \pi_{\alpha}} + q_{\alpha}, \qquad (P,T) \mapsto \tau_{\alpha} = c_{v_{\alpha}} (\gamma_{\alpha} - 1) \frac{T}{P + \pi_{\alpha}}.$$
$$T^{i} = 278 \, \text{K} \dots 610 \, \text{K}, \\g_{\text{liq}}(P,T^{i}) = g_{\text{vap}}(P,T^{i}) \Rightarrow P^{\text{sat}}(T^{i}) \end{cases} \Rightarrow \mathfrak{A} = \left\{ \left(T^{i}, P^{\text{sat}}(T^{i})\right)\right\}_{i=0}^{83}$$

 \widehat{P}^{sat} defined by using a least square approximation of \mathfrak{A} :

$$T \mapsto P^{\mathrm{sat}}(T) \approx \widehat{P}^{\mathrm{sat}}(T) \stackrel{\text{\tiny def}}{=} \exp\left(\sum_{k=-8}^{k=8} a_k T^k\right)$$
WATER TABULATED EOS

$$T^{i} = 278 \text{ K} \dots 610 \text{ K},$$

$$\varepsilon_{\alpha}^{\text{sat}}(T^{i}), \ \tau_{\alpha}^{\text{sat}}(T^{i}) \text{ found in the tables } \} \Rightarrow \begin{cases} \mathfrak{A} = \left\{ \left(T_{i}, \frac{1}{\varepsilon_{\text{vap}}^{\text{sat}}(T_{i})}\right) \right\}_{i} \\ \mathfrak{B} = \left\{ \left(T_{i}, \frac{\varepsilon_{\text{int}}^{\text{sat}}(T_{i})}{\varepsilon_{\text{vap}}^{\text{sat}}(T_{i})}\right) \right\}_{i} \\ \mathfrak{C} = \left\{ \left(T_{i}, \frac{1}{\tau_{\text{vap}}^{\text{sat}}(T_{i})}\right) \right\}_{i} \\ \mathfrak{D} = \left\{ \left(T_{i}, \frac{\tau_{\text{sat}}^{\text{sat}}(T_{i})}{\tau_{\text{vap}}^{\text{sat}}(T_{i})}\right) \right\}_{i} \end{cases}$$

 $\hat{\varepsilon}_{\alpha}^{\text{sat}}$ and $\hat{\tau}_{\alpha}^{\text{sat}}$ defined by using a least square approximation of $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ and \mathfrak{D} :

$$T \mapsto \varepsilon_{\text{vap}}^{\text{sat}} \approx \widehat{\varepsilon}_{\text{vap}}^{\text{sat}} \stackrel{\text{def}}{=} \frac{1}{\sum_{k=0}^{6} a_k T^k} \qquad T \mapsto \varepsilon_{\text{liq}}^{\text{sat}} \approx \widehat{\varepsilon}_{\text{liq}}^{\text{sat}} \stackrel{\text{def}}{=} \widehat{\varepsilon}_{\text{vap}}^{\text{sat}}(T) \sum_{k=0}^{6} b_k T^k$$
$$T \mapsto \tau_{\text{vap}}^{\text{sat}} \approx \widehat{\tau}_{\text{vap}}^{\text{sat}} \stackrel{\text{def}}{=} \frac{1}{\sum_{k=0}^{8} c_k T^k} \qquad T \mapsto \tau_{\text{liq}}^{\text{sat}} \approx \widehat{\tau}_{\text{liq}}^{\text{sat}} \stackrel{\text{def}}{=} \widehat{\tau}_{\text{vap}}^{\text{sat}}(T) \sum_{k=0}^{9} d_k T^k$$

SENTROPIC CURVES

Regularity: [J. CORREIA, P.G. LEFLOCH, M.D. THANH]
 Loss of convexity: [A. Voss]

CONTINUUM SURFACE FORCE (CSF) APPROACH

$$\Pi_{\text{tension}} = -\sigma \operatorname{div}(\mathbf{n})\mathbf{n}$$

[J.U. BRACKBILL, D.B. KOTHE, C. ZEMACH]

METASTABILITY

CRITICAL POINT

• 2 Pure Phases EOS $(\tau, \varepsilon) \mapsto P_{\alpha}$

- **EOS PG** $\varepsilon_{\text{liq}}^* = \varepsilon_{\text{vap}}^* \Leftrightarrow c_{\text{vliq}} = c_{\text{vap}} \text{ (indip. of } T\text{)}$ **SG** $\left\{\tau_i, P_i^{\text{sat,e}}\right\}_i \rightsquigarrow (\tau, \varepsilon) \mapsto P_\alpha \rightsquigarrow \tau \mapsto P_{\text{psat}}$ $\tau_{\text{liq}}^* = \tau_{\text{vap}}^* \text{ but } \varepsilon_{\text{liq}}^* \neq \varepsilon_{\text{vap}}^*$
 - $\{(n,s), (\hat{P}_{0}^{'})\}_{i} \sim (n,s) \mapsto P_{0}.$

CRITICAL POINT

PHYSIC

- 2 Pure Phases EOS $(\tau, \varepsilon) \mapsto P_{\alpha}$ –
- 1 Saturation EOS $\tau \mapsto P^{\text{sat}} \longleftarrow \text{Eq}$

CRITICAL POINT

Physic

- 2 Pure Phases EOS $(\tau, \varepsilon) \mapsto P_{\alpha}$ –
- 1 Saturation EOS $\tau \mapsto P^{\text{sat}} \longleftarrow \text{Eq}$

CRITICAL POINT

PHYSIC

- 2 Pure Phases EOS $(\tau, \varepsilon) \mapsto P_{\alpha}$
- 1 Saturation EOS $\tau \mapsto P^{\text{sat}} \longleftarrow \text{Eq}$

SUMMARY

Phase Change Equation

$$\frac{\tau - \tau_{\rm vap}^{\rm sat}}{\tau_{\rm liq}^{\rm sat} - \tau_{\rm vap}^{\rm sat}} = \frac{\varepsilon - \varepsilon_{\rm vap}^{\rm sat}}{\varepsilon_{\rm liq}^{\rm sat} - \varepsilon_{\rm vap}^{\rm sat}}$$

with

$$T \mapsto \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\mathsf{sat}} (T) = \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha} (T, P^{\mathsf{sat}}(T))$$

or

$$P \mapsto \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\operatorname{sat}}(P) = \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha} (T^{\operatorname{sat}}(P), P)$$

SUMMARY

How to compute saturation functions τ_{α}^{sat} and $\varepsilon_{\alpha}^{sat}$

- Analytical EOS: we compute the saturation functions $\tau_{\alpha}^{\text{sat}}$ and $\varepsilon_{\alpha}^{\text{sat}}$ by the Coexistence Curve:
 - Exact: $T \mapsto P^{\text{sat}}(T)$ or $P \mapsto T^{\text{sat}}(P)$ $\begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\text{sat}}(P) = \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}(T^{\text{sat}}(P), P)$ e.g. Simplified Stiffened Gases
 - Approximated: $T \mapsto \widehat{P}^{sat}(T) \approx P^{sat}(T)$

 $\begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\text{sat}}(T) \approx \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}(T, \widehat{P}^{\text{sat}}(T))$ e.g. General Stiffened Gases

• Tabulated EOS: the saturation functions $\tau_{\alpha}^{\rm sat}$ and $\varepsilon_{\alpha}^{\rm sat}$ are given by experiments and we set

$$\begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\text{sat}} (T \text{ or } P) \approx \begin{pmatrix} \widehat{\tau} \\ \widehat{\varepsilon} \end{pmatrix}_{\alpha}^{\text{sat}} (T \text{ or } P)$$

Appendix						
To Do						
		E	OS	Simulation		
		re Phases	uilibrium	itation	iling	. 8
		PUI	4 de	Co.	Bot	€.µ.
	Virtual Fluid (SG)	1	1	1	1	1
	Real Fluid (SG)	1	1	1	2	3
	Tabulated	4	1	5	6	$\overline{\mathcal{O}}$