MODELLING AND SIMULATION OF LIQUID-VAPOR PHASE TRANSITION A BOILING CRISIS STUDY CONTRIBUTION

Gloria Faccanoni^{1,2} G. Allaire² S. Kokh¹

¹DEN/DANS/DM2S/SFME/LETR, CEA Saclay

²CMAP, École Polytechnique

Orsay, 22nd October 2008

OUTLINE

OUTLINE

PRESSURIZED WATER REACTOR

G. FACCANONI (CMAP

PRESSURIZED WATER REACTOR

G. FACCANONI (CMAP

PRESSURIZED WATER REACTOR

CORE OF A PRESSURIZED WATER REACTOR

BOILING CRISIS

PHENOMENON

Liquid phase heated by a wall at a fixed temperature T^{wall} (pool boiling). When T^{wall} increases, we switch from a nucleate boiling to a film boiling.

Nucleate Boiling

source: http://www.spaceflight.esa.int/users/fluids/TT_boiling.htm

G. FACCANONI (CMAP

iquide-Vapor Phase Transition

OMEGA - CEA GRENOBLE

G. FACCANONI (CMAF

iquide-Vapor Phase Transition

OMEGA - CEA GRENOBLE

G. FACCANONI (CMAF

iquide-Vapor Phase Transition

✓ System of PDEs for the mouvement of the fluid,

- Phase transition (pressure and/or temperature variations),
- Heat Diffusion,
- Surface Tension,
- Gravity.

- System of PDEs for the mouvement of the fluid,
- Phase transition (pressure and/or temperature variations),
- Heat Diffusion,
- Surface Tension,
- Gravity.

- System of PDEs for the mouvement of the fluid,
- Phase transition (pressure and/or temperature variations),
- ✓ Heat Diffusion,
- Surface Tension,
- Gravity.

- System of PDEs for the mouvement of the fluid,
- Phase transition (pressure and/or temperature variations),
- Heat Diffusion,
- Surface Tension,
- Gravity.

- System of PDEs for the mouvement of the fluid,
- Phase transition (pressure and/or temperature variations),
- Heat Diffusion,
- Surface Tension,
- Gravity.

- System of PDEs for the mouvement of the fluid,
- Phase transition (pressure and/or temperature variations),
- Heat Diffusion,
- Surface Tension,
- Gravity.

OUTLINE

EULER SYSTEM

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = \mathbf{0}, \\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P \ \mathbb{I}) = \mathfrak{V}_{\mathrm{vf}} - \mathfrak{S}_{\mathrm{sf}}, \\ \partial_t \left(\rho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \right) + \operatorname{div} \left(\rho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \mathbf{u} + P \ \mathbf{u} \right) = (\mathfrak{V}_{\mathrm{vf}} - \mathfrak{S}_{\mathrm{sf}}) \cdot \mathbf{u} - \operatorname{div}(q). \end{cases}$$

- $(\mathbf{x},t)\mapsto
 ho$ specific density,
- $(\mathbf{x}, t) \mapsto \varepsilon$ specific internal energy,
- $(\mathbf{x}, t) \mapsto \mathbf{u}$ velocity;

- $(
 ho, arepsilon) \mapsto \mathfrak{V}_{\mathrm{vf}}$ volumic forces,
- $(
 ho, arepsilon) \mapsto \mathfrak{S}_{\mathrm{sf}}$ surface forces,
- $(\rho, \varepsilon) \mapsto \operatorname{div}(q)$ heat transfert.

$$(
ho, arepsilon) \mapsto P$$
 pressure law.

EULER SYSTEM

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + \mathbf{P} \mathbb{I}) = \mathfrak{V}_{\mathrm{vf}} - \mathfrak{S}_{\mathrm{sf}}, \\ \partial_t \left(\rho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \right) + \operatorname{div} \left(\rho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \mathbf{u} + \mathbf{P} \mathbf{u} \right) = (\mathfrak{V}_{\mathrm{vf}} - \mathfrak{S}_{\mathrm{sf}}) \cdot \mathbf{u} - \operatorname{div}(q). \end{cases}$$

- $(\mathbf{x},t)\mapsto
 ho$ specific density,
- $(\mathbf{x}, t) \mapsto \varepsilon$ specific internal energy,
- $(\mathbf{x}, t) \mapsto \mathbf{u}$ velocity;

- $(
 ho, arepsilon) \mapsto \mathfrak{V}_{\mathrm{vf}}$ volumic forces,
- $(\rho, \varepsilon) \mapsto \mathfrak{S}_{\mathrm{sf}}$ surface forces,
- $(\rho, \varepsilon) \mapsto \operatorname{div}(q)$ heat transfert.

$$(\rho, \varepsilon) \mapsto P$$
 pressure law.

OUTLINE

Context

2 Model

Muvement Equations

Numerical Approximation

- Numerical Method
- Numerical Tests

Conclusion

$$(\rho, \varepsilon) \mapsto P = \begin{cases} P^{\mathrm{liq}} & \mathrm{if } \varphi = 1; \\ P^{\mathrm{vap}} & \mathrm{if } \varphi = 0. \end{cases}$$

G. FACCANONI (CMAP

$$(\rho, \varepsilon) \mapsto P = \begin{cases} P^{\text{liq}} & \text{if } \varphi = 1; \\ ??? & \text{if } 0 < \varphi < 1; \\ P^{\text{vap}} & \text{if } \varphi = 0. \end{cases}$$

G. FACCANONI (CMAP

$$(\rho, \varepsilon) \mapsto P = \begin{cases} P^{\text{liq}} & \text{if } \varphi = 1; \\ P^{\text{ff}} & \text{if } 0 < \varphi < 1; \\ P^{\text{vap}} & \text{if } \varphi = 0. \end{cases}$$

G. FACCANONI (CMAP

➡ Goal: define a global pressure law such that

- $(\rho, \varepsilon, \mathbf{u}, \mathbf{P})$ are continuous (3 zones)
- the interface position and the phase change are implicit (→)
- coherence with classical thermodynamics [H. Callen]

$$\left. egin{array}{l} au_{lpha} \mbox{ specific volume} \\ arepsilon_{lpha} \mbox{ specific internal energy} \end{array}
ight\} \quad \Rightarrow \quad \mathbf{w}_{lpha} \stackrel{\mbox{\tiny def}}{=} (au_{lpha}, arepsilon_{lpha});$$

 $\mathbf{w}_{\alpha} \mapsto s_{\alpha}$ specific entropy (Hessian matrix neg. def.);

$$\begin{cases} T_{\alpha} \stackrel{\text{def}}{=} \left(\frac{\partial s_{\alpha}}{\partial \varepsilon_{\alpha}} \Big|_{\tau_{\alpha}} \right)^{-1} > 0 \quad \text{temperature,} \\ P_{\alpha} \stackrel{\text{def}}{=} T_{\alpha} \left. \frac{\partial s_{\alpha}}{\partial \tau_{\alpha}} \right|_{\varepsilon_{\alpha}} > 0 \quad \text{pressure,} \\ g_{\alpha} \stackrel{\text{def}}{=} \varepsilon_{\alpha} + P_{\alpha} \tau_{\alpha} - T_{\alpha} s_{\alpha} \quad \text{free enthalpy (Gibbs potential)} \end{cases}$$

G. FACCANONI (CMAP

$$\left. egin{array}{l} au_{lpha} \mbox{ specific volume} \\ arepsilon_{lpha} \mbox{ specific internal energy} \end{array}
ight\} \quad \Rightarrow \quad \mathbf{w}_{lpha} \stackrel{\mbox{\tiny def}}{=} (au_{lpha}, arepsilon_{lpha});$$

 $\mathbf{w}_{\alpha} \mapsto s_{\alpha}$ specific entropy (Hessian matrix neg. def.);

$$\begin{cases} T_{\alpha} \stackrel{\text{def}}{=} \left(\frac{\partial s_{\alpha}}{\partial \varepsilon_{\alpha}} \Big|_{\tau_{\alpha}} \right)^{-1} > 0 \quad \text{temperature,} \\ P_{\alpha} \stackrel{\text{def}}{=} T_{\alpha} \left. \frac{\partial s_{\alpha}}{\partial \tau_{\alpha}} \right|_{\varepsilon_{\alpha}} > 0 \quad \text{pressure,} \\ g_{\alpha} \stackrel{\text{def}}{=} \varepsilon_{\alpha} + P_{\alpha} \tau_{\alpha} - T_{\alpha} s_{\alpha} \quad \text{free enthalpy (Gibbs potential)} \end{cases}$$

G. FACCANONI (CMAP

$$\left. egin{array}{l} au_{lpha} ext{ specific volume} \\ arepsilon_{lpha} ext{ specific internal energy} \end{array}
ight\} \quad \Rightarrow \quad \mathbf{w}_{lpha} \stackrel{\text{\tiny def}}{=} (au_{lpha}, arepsilon_{lpha});$$

 $\mathbf{w}_{\alpha} \mapsto s_{\alpha}$ specific entropy (Hessian matrix neg. def.);

$$\begin{cases} T_{\alpha} \stackrel{\text{def}}{=} \left(\frac{\partial s_{\alpha}}{\partial \varepsilon_{\alpha}} \Big|_{\tau_{\alpha}} \right)^{-1} > 0 \quad \text{temperature,} \\ P_{\alpha} \stackrel{\text{def}}{=} T_{\alpha} \frac{\partial s_{\alpha}}{\partial \tau_{\alpha}} \Big|_{\varepsilon_{\alpha}} > 0 \quad \text{pressure,} \\ g_{\alpha} \stackrel{\text{def}}{=} \varepsilon_{\alpha} + P_{\alpha} \tau_{\alpha} - T_{\alpha} s_{\alpha} \quad \text{free enthalpy (Gibbs potential)} \end{cases}$$

G. FACCANONI (CMAP

$$\left. egin{array}{l} au_{lpha} ext{ specific volume} \\ arepsilon_{lpha} ext{ specific internal energy} \end{array}
ight\} \quad \Rightarrow \quad \mathbf{w}_{lpha} \stackrel{\text{\tiny def}}{=} (au_{lpha}, arepsilon_{lpha});$$

 $\mathbf{w}_{\alpha} \mapsto s_{\alpha}$ specific entropy (Hessian matrix neg. def.);

G. FACCANONI (CMAP

- $\mathbf{w} \stackrel{\text{\tiny def}}{=} y \mathbf{w}_1 + (1 y) \mathbf{w}_2;$
- y mass fraction;
- *z* volume fraction s.t. $y\tau_1 = z\tau$;
- ψ energy fraction s.t. $y\varepsilon_1 = \psi\varepsilon$.

- $\mathbf{w} \stackrel{\text{\tiny def}}{=} y \mathbf{w}_1 + (1 y) \mathbf{w}_2;$
- y mass fraction;
- *z* volume fraction s.t. $y\tau_1 = z\tau$;
- ψ energy fraction s.t. $y\varepsilon_1 = \psi\varepsilon$.

ENTROPY WITHOUT PHASE CHANGE

$$\sigma \stackrel{\text{def}}{=} y s_1(\mathbf{w}_1) + (1 - y) s_2(\mathbf{w}_2) = y s_1\left(\frac{z}{y}\tau, \frac{\psi}{y}\varepsilon\right) + (1 - y) s_2\left(\frac{1 - z}{1 - y}\tau, \frac{1 - \psi}{1 - y}\varepsilon\right)$$
$$P = \left(\frac{\partial \sigma}{\partial \varepsilon}\Big|_{\tau; y, z, \psi}\right)^{-1} \frac{\partial \sigma}{\partial \tau}\Big|_{\varepsilon; y, z, \psi}$$

- $\mathbf{w} \stackrel{\text{\tiny def}}{=} y \mathbf{w}_1 + (1 y) \mathbf{w}_2;$
- y mass fraction;
- *z* volume fraction s.t. $y\tau_1 = z\tau$;
- ψ energy fraction s.t. $y\varepsilon_1 = \psi\varepsilon$.

ENTROPY WITHOUT PHASE CHANGE

$$\sigma \stackrel{\text{def}}{=} ys_1(\mathbf{w}_1) + (1-y)s_2(\mathbf{w}_2) = ys_1\left(\frac{z}{y}\tau, \frac{\psi}{y}\varepsilon\right) + (1-y)s_2\left(\frac{1-z}{1-y}\tau, \frac{1-\psi}{1-y}\varepsilon\right)$$
$$P = \left(\left.\frac{\partial\sigma}{\partial\varepsilon}\right|_{\tau;y,z,\psi}\right)^{-1} \left.\frac{\partial\sigma}{\partial\tau}\right|_{\varepsilon;y,z,\psi}$$

- $\mathbf{w} \stackrel{\text{\tiny def}}{=} y \mathbf{w}_1 + (1 y) \mathbf{w}_2;$
- y mass fraction;
- *z* volume fraction s.t. $y\tau_1 = z\tau$;
- ψ energy fraction s.t. $y\varepsilon_1 = \psi\varepsilon$.

ENTROPY WITHOUT PHASE CHANGE

$$\sigma \stackrel{\text{def}}{=} y s_1(\mathbf{w}_1) + (1-y) s_2(\mathbf{w}_2) = y s_1\left(\frac{z}{y}\tau, \frac{\psi}{y}\varepsilon\right) + (1-y) s_2\left(\frac{1-z}{1-y}\tau, \frac{1-\psi}{1-y}\varepsilon\right)$$
$$P = \left(\frac{\partial \sigma}{\partial \varepsilon}\Big|_{\tau; y, z, \psi}\right)^{-1} \frac{\partial \sigma}{\partial \tau}\Big|_{\varepsilon; y, z, \psi}$$

ENTROPY WITHOUT PH.CH.ENTROPY AT EQUILIBRIUM
$$(\mathbf{w}, z, y, \psi) \mapsto \boldsymbol{\sigma}$$
 $\mathbf{w} \mapsto \boldsymbol{s}^{eq}$

DEFINITION [H. CALLEN, PH. HELLUY ...] Optimization Problem:

$$s^{eq}(\mathbf{w}) \stackrel{\text{\tiny def}}{=} \max_{z,y,\psi \in [0,1]^3} \sigma(\mathbf{w}, z, y, \psi)$$

Optimality Condition:

$$T_1(z, y, \psi) = T_2(z, y, \psi)$$

$$P_1(z, y, \psi) = P_2(z, y, \psi)$$

$$g_1(z, y, \psi) = g_2(z, y, \psi)$$

$$z, y, \psi \in]0, 1[^3$$

Solution: (z^*, y^*, ψ^*)

DEFINITION [H. CALLEN, PH. HELLUY ...] Optimization Problem:

$$s^{\text{eq}}(\mathbf{w}) \stackrel{\text{\tiny det}}{=} \max_{z,y,\psi \in [0,1]^3} \sigma(\mathbf{w}, z, y, \psi)$$

Optimality Condition:

$$T_1(z, y, \psi) = T_2(z, y, \psi)$$

$$P_1(z, y, \psi) = P_2(z, y, \psi)$$

$$g_1(z, y, \psi) = g_2(z, y, \psi)$$

$$z, y, \psi \in]0, 1[^3$$

Solution: (z^*, y^*, ψ^*)

G. FACCANONI (CMAP

EOS WITH PHASE CHANGE

$$(au, arepsilon) \mapsto s_{ ext{liq}}$$

$$(au, arepsilon) \mapsto s_{\mathrm{vap}}$$

 $(au, arepsilon) \mapsto \max\{s_{ ext{liq}}, s_{ ext{vap}}\}$

G. FACCANONI (CMAP

 $(au, arepsilon) \mapsto \max\{s_{ ext{liq}}, s_{ ext{vap}}\}$

G. FACCANONI (CMAP

$$(au, arepsilon) \mapsto \mathrm{co}\Big\{\maxig\{s_{\mathrm{liq}}, s_{\mathrm{vap}}ig\}\Big\}$$

G. FACCANONI (CMAF

$$(au, arepsilon) \mapsto \mathrm{co}\Big\{\maxig\{s_{\mathrm{liq}}, s_{\mathrm{vap}}ig\}\Big\}$$

G. FACCANONI (CMAP

For all \widetilde{w} fixed, we seek $(w^*_{liq},w^*_{vap},y^*)$ as the solution of the system

$$\begin{cases} P_{\text{liq}}(\mathbf{w}_{\text{liq}}) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ T_{\text{liq}}(\mathbf{w}_{\text{liq}}) = T_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ g_{\text{liq}}(\mathbf{w}_{\text{liq}}) = g_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ \widetilde{\mathbf{w}} = y \mathbf{w}_{\text{liq}} + (1 - y) \mathbf{w}_{\text{vap}} \end{cases}$$

• if $y^* \in]0,1[$ then \widetilde{w} is an equilibrium mixture state

$$s^{\text{eq}}(\widetilde{\mathbf{w}}) = \gamma^* s_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) + (1 - \gamma^*) s_{\text{vap}}(\mathbf{w}_{\text{vap}}^*),$$

$$P^{\text{eq}}(\widetilde{\mathbf{w}}) = P_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}^*);$$

if the system has no solution or y* ∉]0, 1[then w is a monophasique pure state

$$s^{\mathrm{eq}}(\widetilde{\mathbf{w}}) = \max\{s_{\mathrm{liq}}(\widetilde{\mathbf{w}}), s_{\mathrm{vap}}(\widetilde{\mathbf{w}})\},\$$

For all \widetilde{w} fixed, we seek $(w^*_{liq},w^*_{vap},y^*)$ as the solution of the system

$$\begin{cases} P_{\text{liq}}(\mathbf{w}_{\text{liq}}) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ T_{\text{liq}}(\mathbf{w}_{\text{liq}}) = T_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ g_{\text{liq}}(\mathbf{w}_{\text{liq}}) = g_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ \widetilde{\mathbf{w}} = y \mathbf{w}_{\text{liq}} + (1 - y) \mathbf{w}_{\text{vap}} \end{cases}$$

() if $y^* \in (0, 1)$ then \widetilde{w} is an equilibrium mixture state

$$\begin{split} \boldsymbol{s}^{\text{eq}}(\widetilde{\boldsymbol{w}}) &= \boldsymbol{y}^* \boldsymbol{s}_{\text{liq}}(\boldsymbol{w}_{\text{liq}}^*) + (1 - \boldsymbol{y}^*) \boldsymbol{s}_{\text{vap}}(\boldsymbol{w}_{\text{vap}}^*), \\ \boldsymbol{P}^{\text{eq}}(\widetilde{\boldsymbol{w}}) &= \boldsymbol{P}_{\text{liq}}(\boldsymbol{w}_{\text{liq}}^*) = \boldsymbol{P}_{\text{vap}}(\boldsymbol{w}_{\text{vap}}^*); \end{split}$$

if the system has no solution or y* ∉]0, 1[then w is a monophasique pure state

$$s^{\mathrm{eq}}(\widetilde{\mathbf{w}}) = \max\{s_{\mathrm{liq}}(\widetilde{\mathbf{w}}), s_{\mathrm{vap}}(\widetilde{\mathbf{w}})\},\$$

For all \widetilde{w} fixed, we seek $(w^*_{liq},w^*_{vap},y^*)$ as the solution of the system

$$\begin{cases} P_{\text{liq}}(\mathbf{w}_{\text{liq}}) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ T_{\text{liq}}(\mathbf{w}_{\text{liq}}) = T_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ g_{\text{liq}}(\mathbf{w}_{\text{liq}}) = g_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ \widetilde{\mathbf{w}} = y \mathbf{w}_{\text{liq}} + (1 - y) \mathbf{w}_{\text{vap}} \end{cases}$$

● if $y^* \in]0,1[$ then \widetilde{w} is an equilibrium mixture state

$$s^{\text{eq}}(\widetilde{\mathbf{w}}) = y^* s_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) + (1 - y^*) s_{\text{vap}}(\mathbf{w}_{\text{vap}}^*),$$
$$P^{\text{eq}}(\widetilde{\mathbf{w}}) = P_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}^*);$$

● if the system has no solution or y* ∉]0,1[then w is a monophasique pure state

$$s^{eq}(\widetilde{\mathbf{w}}) = \max\{s_{liq}(\widetilde{\mathbf{w}}), s_{vap}(\widetilde{\mathbf{w}})\},\ P^{eq}(\widetilde{\mathbf{w}}) = P_{\alpha}(\widetilde{\mathbf{w}}).$$

For all \widetilde{w} fixed, we seek $(w^*_{liq},w^*_{vap},y^*)$ as the solution of the system

$$\begin{cases} P_{\text{liq}}(\mathbf{w}_{\text{liq}}) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ T_{\text{liq}}(\mathbf{w}_{\text{liq}}) = T_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ g_{\text{liq}}(\mathbf{w}_{\text{liq}}) = g_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ \widetilde{\mathbf{w}} = y \mathbf{w}_{\text{liq}} + (1 - y) \mathbf{w}_{\text{vap}} \end{cases}$$

() if $y^* \in]0, 1[$ then \widetilde{w} is an equilibrium mixture state

$$\begin{split} s^{\text{eq}}(\widetilde{\mathbf{w}}) &= y^* s_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) + (1 - y^*) s_{\text{vap}}(\mathbf{w}_{\text{vap}}^*), \\ P^{\text{eq}}(\widetilde{\mathbf{w}}) &= P_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}^*); \end{split}$$

● if the system has no solution or y* ∉]0,1[then w is a monophasique pure state

$$s^{eq}(\widetilde{\mathbf{w}}) = \max\{s_{liq}(\widetilde{\mathbf{w}}), s_{vap}(\widetilde{\mathbf{w}})\},\ P^{eq}(\widetilde{\mathbf{w}}) = P_{\alpha}(\widetilde{\mathbf{w}}).$$

For all \widetilde{w} fixed, we seek $(w^*_{liq},w^*_{vap},y^*)$ as the solution of the system

$$\begin{cases} P_{\text{liq}}(\mathbf{w}_{\text{liq}}) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ T_{\text{liq}}(\mathbf{w}_{\text{liq}}) = T_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ g_{\text{liq}}(\mathbf{w}_{\text{liq}}) = g_{\text{vap}}(\mathbf{w}_{\text{vap}}) \\ \widetilde{\mathbf{w}} = y \mathbf{w}_{\text{liq}} + (1 - y) \mathbf{w}_{\text{vap}} \end{cases}$$

() if $y^* \in]0, 1[$ then \widetilde{w} is an equilibrium mixture state

$$\begin{split} s^{\text{eq}}(\widetilde{\mathbf{w}}) &= y^* s_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) + (1 - y^*) s_{\text{vap}}(\mathbf{w}_{\text{vap}}^*), \\ P^{\text{eq}}(\widetilde{\mathbf{w}}) &= P_{\text{liq}}(\mathbf{w}_{\text{liq}}^*) = P_{\text{vap}}(\mathbf{w}_{\text{vap}}^*); \end{split}$$

● if the system has no solution or y* ∉]0,1[then w is a monophasique pure state

$$s^{\text{eq}}(\widetilde{\mathbf{w}}) = \max\{s_{\text{liq}}(\widetilde{\mathbf{w}}), s_{\text{vap}}(\widetilde{\mathbf{w}})\},\\ P^{\text{eq}}(\widetilde{\mathbf{w}}) = P_{\alpha}(\widetilde{\mathbf{w}}).$$

 (τ, ε) fixed

$$(\tau_1, \varepsilon_1, \tau_2, \varepsilon_2, y)$$
 solution of
 $g_1(\tau_1, \varepsilon_1) = g_2(\tau_2, \varepsilon_2)$

$$P_{1}(\tau_{1},\varepsilon_{1}) = P_{2}(\tau_{2},\varepsilon_{2})$$

$$T_{1}(\tau_{1},\varepsilon_{1}) = T_{2}(\tau_{2},\varepsilon_{2})$$

$$\tau = y\tau_{1} + (1-y)\tau_{2}$$

$$\varepsilon = y\varepsilon_{1} + (1-y)\varepsilon_{2}$$

$$(P,T) \text{ solution of}$$

$$\begin{cases} g_1(P,T) = g_2(P,T) \\\\ \frac{\tau - \tau_2(P,T)}{\tau_1(P,T) - \tau_2(P,T)} = \frac{\varepsilon - \varepsilon_2(P,T)}{\varepsilon_1(P,T) - \varepsilon_2(P,T)} \end{cases}$$

$$T \mapsto P = P^{\operatorname{sat}}(T) \approx P^{\operatorname{sat}}(T)$$

T SOLUTION OF

$$\frac{\tau - \tau_2^{\text{sat}}(T)}{\tau_1^{\text{sat}}(T) - \tau_2^{\text{sat}}(T)} = \frac{\varepsilon - \varepsilon_2^{\text{sat}}(T)}{\varepsilon_1^{\text{sat}}(T) - \varepsilon_2^{\text{sat}}(T)} \quad \text{where } \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\text{sat}}(T) \stackrel{\text{def}}{=} \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha} (P^{\text{sat}}(T), T)$$

▶ Water Example

 (τ, ε) fixed

$$\begin{aligned} & (\tau_1, \varepsilon_1, \tau_2, \varepsilon_2, y) \text{ solution of} \\ & \left\{ \begin{aligned} g_1(\tau_1, \varepsilon_1) &= g_2(\tau_2, \varepsilon_2) \\ P_1(\tau_1, \varepsilon_1) &= P_2(\tau_2, \varepsilon_2) \\ T_1(\tau_1, \varepsilon_1) &= T_2(\tau_2, \varepsilon_2) \\ \tau &= y\tau_1 + (1-y)\tau_2 \\ \varepsilon &= y\varepsilon_1 + (1-y)\varepsilon_2 \end{aligned} \right.$$

$$(P,T) \text{ solution of}$$

$$\begin{cases} g_1(P,T) = g_2(P,T) \\ \frac{\tau - \tau_2(P,T)}{\tau_1(P,T) - \tau_2(P,T)} = \frac{\varepsilon - \varepsilon_2(P,T)}{\varepsilon_1(P,T) - \varepsilon_2(P,T)} \end{cases}$$

$$T \mapsto P = P^{\mathrm{sat}}(T) \approx P^{\mathrm{sat}}(T)$$

T SOLUTION OF

$$\frac{\tau - \tau_2^{\text{sat}}(T)}{\tau_1^{\text{sat}}(T) - \tau_2^{\text{sat}}(T)} = \frac{\varepsilon - \varepsilon_2^{\text{sat}}(T)}{\varepsilon_1^{\text{sat}}(T) - \varepsilon_2^{\text{sat}}(T)} \quad \text{where } \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\text{sat}}(T) \stackrel{\text{def}}{=} \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha} (P^{\text{sat}}(T), T)$$

➡ Water Example

 (τ, ε) fixed

$$\frac{\tau - \tau_2^{\operatorname{sal}}(T)}{\tau_1^{\operatorname{sal}}(T) - \tau_2^{\operatorname{sal}}(T)} = \frac{\varepsilon - \varepsilon_2^{\operatorname{sal}}(T)}{\varepsilon_1^{\operatorname{sal}}(T) - \varepsilon_2^{\operatorname{sal}}(T)} \quad \text{ where } \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\alpha}(T) \stackrel{\text{def}}{=} \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}(P^{\operatorname{sal}}(T), T)$$

➡ Water Example

G. FACCANONI (CMAP

 (τ, ε) fixed

T SOLUTION OF

$$\frac{\tau - \tau_2^{\text{sat}}(T)}{\tau_1^{\text{sat}}(T) - \tau_2^{\text{sat}}(T)} = \frac{\varepsilon - \varepsilon_2^{\text{sat}}(T)}{\varepsilon_1^{\text{sat}}(T) - \varepsilon_2^{\text{sat}}(T)} \quad \text{where } \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\text{sat}}(T) \stackrel{\text{\tiny def}}{=} \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha} (P^{\text{sat}}(T), T)$$

 (τ, ε) fixed

T SOLUTION OF

$$\frac{\tau - \tau_2^{\text{sat}}(T)}{\tau_1^{\text{sat}}(T) - \tau_2^{\text{sat}}(T)} = \frac{\varepsilon - \varepsilon_2^{\text{sat}}(T)}{\varepsilon_1^{\text{sat}}(T) - \varepsilon_2^{\text{sat}}(T)} \quad \text{where } \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha}^{\text{sat}}(T) \stackrel{\text{\tiny def}}{=} \begin{pmatrix} \tau \\ \varepsilon \end{pmatrix}_{\alpha} (\widehat{\boldsymbol{P}}^{\text{sat}}(T), T)$$

➡ Water Example

TABULATED EOS

➡ Water Examples

G. FACCANONI (CMAF

TABULATED EOS

TABULATED EOS

OUTLINE

Context

2 Model

- Equation of state
- Muvement Equations

Numerical Approximation

- Numerical Method
- Numerical Tests

Conclusion

DYNAMIC LIQUID-VAPOR PHASE CHANGE

EULER SYSTEM

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + \mathbf{P}^{eq} \mathbb{I}) = 0 \\ \partial_t \left(\rho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \right) + \operatorname{div}\left(\rho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \mathbf{u} + \mathbf{P}^{eq} \mathbf{u} \right) = 0 \end{cases} \text{ with } \mathbf{P}^{eq} \stackrel{\text{def}}{=} \frac{\mathbf{s}_{\tau}^{eq}}{\mathbf{s}_{\varepsilon}^{eq}}.$$

PROPERTIES [G. ALLAIRE, G. FACCANONI, S. KOKH]

- If $\tau_1^* \neq \tau_2^*$ and $\varepsilon_1^* \neq \varepsilon_2^*$ (first order phase transition) then
 - **D** Euler system: strict hyperbolicity (\neq p-system),
 - Riemann problem: multitude of entropy (Lax) solutions [R. Menikoff, B. J. Plohr], uniqueness of Liu solution.

DYNAMIC LIQUID-VAPOR PHASE CHANGE

EULER SYSTEM

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + \mathbf{P}^{eq} \mathbb{I}) = 0 \\ \partial_t \left(\rho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \right) + \operatorname{div}\left(\rho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \mathbf{u} + \mathbf{P}^{eq} \mathbf{u} \right) = 0 \end{cases} \text{ with } \mathbf{P}^{eq} \stackrel{\text{def}}{=} \frac{\mathbf{s}_{\tau}^{eq}}{\mathbf{s}_{\varepsilon}^{eq}}.$$

PROPERTIES [G. ALLAIRE, G. FACCANONI, S. KOKH]

- If $\tau_1^* \neq \tau_2^*$ and $\varepsilon_1^* \neq \varepsilon_2^*$ (first order phase transition) then **1** $c(\mathbf{w}) > 0$, **2** $s_{\tau\varepsilon}^{cq}(\mathbf{w}) > 0$
 - Euler system: strict hyperbolicity (\neq p-system),

Riemann problem: multitude of entropy (Lax) solutions [R. Menikoff, B. J. Plohr], uniqueness of Liu solution.

DYNAMIC LIQUID-VAPOR PHASE CHANGE

EULER SYSTEM

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + \mathbf{P}^{eq} \mathbb{I}) = 0 \\ \partial_t \left(\rho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \right) + \operatorname{div}\left(\rho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \mathbf{u} + \mathbf{P}^{eq} \mathbf{u} \right) = 0 \end{cases} \text{ with } \mathbf{P}^{eq} \stackrel{\text{def}}{=} \frac{\mathbf{s}_{\tau}^{eq}}{\mathbf{s}_{\varepsilon}^{eq}}.$$

PROPERTIES [G. ALLAIRE, G. FACCANONI, S. KOKH]

- If $\tau_1^* \neq \tau_2^*$ and $\varepsilon_1^* \neq \varepsilon_2^*$ (first order phase transition) then • $c(\mathbf{w}) > 0$, • $s_{\tau\varepsilon}^{eq}(\mathbf{w}) > 0$
 - Euler system: strict hyperbolicity (\neq p-system),

Riemann problem: multitude of entropy (Lax) solutions [R. Menikoff, B. J. Plohr], uniqueness of Liu solution.

OUTLINE

How to simulate the Liu solution

- Exact Riemann Solver (cf. [A. Voß] for Van der Waals EOS)
- Viscous Solver (the Liu solution is the only solution that has a viscous profile) (cf. [S. Jaouen] for Perfect Gas EOS with $c_{V_{\text{lig}}} = c_{V_{\text{vap}}}$)
- Solver(s) based on Relaxation Approach [F. Coquel, B. Perthame], [Th. Barberon, Ph. Helluy], [Ph. Helluy, N. Seguin], [F. Coquel, F. Caro, D. Jamet, S. Kokh],...

OUTLINE

Context

2 Model

- Equation of state
- Muvement Equations

3 Numerical Approximation

- Numerical Method
- Numerical Tests

Conclusion

$\partial_t \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$

G. FACCANONI (CMAP)

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V}) \qquad \xrightarrow{\text{Formally}} \qquad \partial_t \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$$

G. FACCANONI (CMAP)

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V}) \qquad \xrightarrow{\text{Formally}} \qquad \partial_t \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$$

EQUILIBRIUM SYSTEM

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0\\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P^{eq} \mathbb{I}) = 0\\ \partial_t(\rho e) + \operatorname{div}((\rho e + P^{eq})\mathbf{u}) = 0 \end{cases}$$
$$P^{eq}(\rho, \varepsilon) = \frac{\mathbf{s}_{\tau}^{eq}}{\mathbf{s}_{\varepsilon}^{eq}}, \quad e^{\frac{\operatorname{de}}{2}} \frac{|\mathbf{u}|^2}{2} + \varepsilon$$

G. FACCANONI (CMAR

$$\partial_{t} \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V}) \qquad \xrightarrow{\text{Formally}} \qquad \partial_{t} \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$$

$$\begin{array}{l} \textbf{AUGMENTED SYSTEM} \\ \\ \begin{array}{l} \partial_{t}(\rho \, \mathbf{u}) + \operatorname{div}(\rho \, \mathbf{u}) = 0 \\ \partial_{t}(\rho \, \mathbf{u}) + \operatorname{div}(\rho \, \mathbf{u} \otimes \, \mathbf{u} + P \, \mathbb{I}) = 0 \\ \partial_{t}(\rho \, \mathbf{e}) + \operatorname{div}((\rho \, \mathbf{e} + P) \, \mathbf{u}) = 0 \end{array} \\ \begin{array}{l} \begin{array}{l} \mathbf{E} \mathbf{OUILIBRIUM SYSTEM} \\ \\ \begin{array}{l} \partial_{t}\rho \, \mathbf{e} + \operatorname{div}(\rho \, \mathbf{u}) = 0 \\ \partial_{t}(\rho \, \mathbf{u}) + \operatorname{div}(\rho \, \mathbf{u} \otimes \, \mathbf{u} + P^{eq} \, \mathbb{I}) = 0 \\ \partial_{t}(\rho \, \mathbf{e}) + \operatorname{div}((\rho \, \mathbf{e} + P^{eq}) \, \mathbf{u}) = 0 \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \mathcal{P}^{eq}(\rho, \varepsilon) = \frac{\mathcal{S}^{eq}_{eq}}{\mathcal{S}^{eq}_{eq}}, \quad e^{\frac{ee}{2}} \frac{|\mathbf{u}|^{2}}{2} + \varepsilon \end{array} \\ \end{array} \\ \end{array}$$

In the interface $\partial_t y$

$$\partial_{t} \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V}) \qquad \xrightarrow{\operatorname{Formally}} \qquad \partial_{t} \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$$

$$AUGMENTED SYSTEM$$

$$\begin{cases} \partial_{t} \rho + \operatorname{div}(\rho \mathbf{u}) = 0 \\ \partial_{t}(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0 \\ \partial_{t}(\rho e) + \operatorname{div}((\rho e + P) \mathbf{u}) = 0 \end{cases}$$

$$\begin{cases} \partial_{t} z + \mathbf{u} \cdot \operatorname{grad} z = \\ \partial_{t} y + \mathbf{u} \cdot \operatorname{grad} y = \\ \partial_{t} \psi + \mathbf{u} \cdot \operatorname{grad} \psi = \end{cases}$$

$$P(\rho, \varepsilon, z, y, \psi) = \frac{\sigma_{\tau}}{\sigma_{\varepsilon}}$$

 ∂_t ∂_t ∂_t ∂_t

 ∂_t

 $P(\rho,$

In the interface $\int \theta^t$

$$\partial_{t} \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V}) \xrightarrow{\text{Formally}} \partial_{t} \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$$
AUGMENTED SYSTEM

$$\rho + \operatorname{div}(\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0$$

$$(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0$$

$$(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0$$

$$z + \mathbf{u} \cdot \mathbf{grad} z = \frac{1}{\mu_{z}} \left(\frac{P_{z}}{T_{z}} - \frac{P_{1}}{T_{1}}\right)$$

$$y + \mathbf{u} \cdot \mathbf{grad} y = \frac{1}{\mu_{y}} \left(\frac{g_{1}}{T_{1}} - \frac{g_{2}}{T_{2}}\right) \frac{1}{\rho}$$

$$\psi + \mathbf{u} \cdot \mathbf{grad} \psi = \frac{1}{\mu_{\psi}} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \varepsilon$$

$$\varepsilon, z, y, \psi) = \frac{\sigma_{\tau}}{\sigma_{\varepsilon}}$$

$$\frac{\text{Formally}}{\partial_{t}(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u}) = 0}$$

$$P^{eq}(\rho, \varepsilon) = \frac{s_{\tau}^{eq}}{s_{\varepsilon}^{eq}}, \quad e^{\frac{def}{d}} \frac{|\mathbf{u}|^{2}}{2} + \varepsilon$$

G. FACCANONI (CMAP

 ∂_t ∂_t

In the interface

 $P(\rho,$

$$\partial_{t} \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V}) \xrightarrow{\text{Formally}} \partial_{t} \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$$

$$AUGMENTED SYSTEM$$

$$\begin{pmatrix} \partial_{t}\rho + \operatorname{div}(\rho \mathbf{u}) = 0 \\ \partial_{t}(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}) = 0 \\ \partial_{t}(\rho e) + \operatorname{div}((\rho e + P)\mathbf{u}) = 0 \\ \partial_{t}z + \mathbf{u} \cdot \mathbf{grad} z = \frac{1}{\mu_{z}} \left(\frac{P_{2}}{T_{2}} - \frac{P_{1}}{T_{1}}\right) \\ \partial_{t}y + \mathbf{u} \cdot \mathbf{grad} y = \frac{1}{\mu_{y}} \left(\frac{g_{1}}{T_{1}} - \frac{g_{2}}{T_{2}}\right) \frac{1}{\rho} \\ \partial_{t}(\varphi \mathbf{u} + \mathbf{u} \cdot \mathbf{grad} \psi = \frac{1}{\mu_{\psi}} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \varepsilon \\ (\rho, \varepsilon, z, y, \psi) = \frac{\sigma_{\varepsilon}}{\sigma_{\varepsilon}} \end{pmatrix} \xrightarrow{\text{Formally}} \partial_{t} U + \operatorname{div}(\rho \mathbf{u}) = 0$$

REMARK: $\partial_t \psi + \mathbf{u} \cdot \mathbf{grad} \psi = 0 \rightsquigarrow T_1 = T_2.$

NUMERICAL SCHEME

Vⁿ_i

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \mathbf{S}(\mathbf{V}) + \frac{1}{\mu} \mathbf{R}(\mathbf{V})$$

Aug. System: 5-eq. iso-T Num. Scheme: op. splitting Conv.: [G. Allaire and all.] Surf. Tens.: [J. U. Brackbill and all.] Heat: 2D implicit $\mathbf{\Theta} \ \mu_j = 0$ \downarrow $\mathbf{R}(\mathbf{V}) = \mathbf{0}$

update fractions (y, z, ψ) by projecting $V_i^{n+1/2}$ onto the P, *T*, *g* equilibrium \mathbf{V}_{i}^{n+1}

NUMERICAL SCHEME

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \mathbf{S}(\mathbf{V}) + \frac{1}{\mu} \mathbf{R}(\mathbf{V})$$

Vⁿ_i

Aug. System: 5-eq. iso-T Num. Scheme: op. splitting Conv.: [G. Allaire and all.] Surf. Tens.: [J. U. Brackbill and all.] Heat: 2D implicit $oldsymbol{arPhi} \mu_j = 0 \ \psi \ {f R}({f V}) = {f 0}$

update fractions (y, z, ψ) by projecting $\mathbf{V}_i^{n+1/2}$ onto the *P*, *T*, *g* equilibrium

NUMERICAL SCHEME

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \mathbf{S}(\mathbf{V}) + \frac{1}{\mu} \mathbf{R}(\mathbf{V})$$

Aug. System: 5-eq. iso-T Num. Scheme: op. splitting Conv.: [G. Allaire and all.] Surf. Tens.: [J. U. Brackbill and all.] Heat: 2D implicit update fractions (y, z, ψ) by projecting $V_i^{n+1/2}$ onto the *P*, *T*, *g* equilibrium
NUMERICAL SCHEME

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \mathbf{S}(\mathbf{V}) + \frac{1}{\mu} \mathbf{R}(\mathbf{V})$$

Aug. System: 5-eq. iso-T Num. Scheme: op. splitting Conv.: [G. Allaire and all.] Surf. Tens.: [J. U. Brackbill and all.] Heat: 2D implicit update fractions (y, z, ψ) by projecting $V_i^{n+1/2}$ onto the P, T, g equilibrium

NUMERICAL SCHEME

Aug. System: 5-eq. iso-T Num. Scheme: op. splitting Conv.: [G. Allaire and all.] Surf. Tens.: [J. U. Brackbill and all.] Heat: 2D implicit update fractions (y, z, ψ) by projecting $\mathbf{V}_i^{n+1/2}$ onto the *P*, *T*, *g* equilibrium

G. FACCANONI (CMAP

OUTLINE

Context

2 Model

- Equation of state
- Muvement Equations

- Numerical Method
- Numerical Tests

Conclusion

Compression of 4 Vapor Bubbles involving two Stiffened Gases for water and steam. The piston moves towards right at constant speed $u_p = 30$ m/s.

Liquide-Vapor Phase Tr

G. FACCANONI (CMAP)

iquide-Vapor Phase Transition

G. FACCANONI (CMAP)

iquide-Vapor Phase Transition

G. FACCANONI (CMAP

G. FACCANONI (CMAP)

G. FACCANONI (CMAP

28/31

G. FACCANONI (CMAP

quide-Vapor Phase Transition

28/31

G. FACCANONI (CMAP)

28/31

28/31

G. FACCANONI (CMAP

29/31

G. FACCANONI (CMAP

29/31

G. FACCANONI (CMAP

29/31

OUTLINE

LIQUID-VAPOR PHASE TRANSITION

Diffuse Interface Model

- global EOS always at equilibrium (entropy maximization),
- strict hyperbolicity of the Euler system,
- uniqueness of Liu solution for the Riemann problem;

Relaxation Approach

• 6 (or 5) equation system with relaxation terms;

Numerical Method

- operator splitting,
- general approximate construction of global EOS (and resolution of projection step).

LIQUID-VAPOR PHASE TRANSITION

Diffuse Interface Model

- global EOS always at equilibrium (entropy maximization),
- strict hyperbolicity of the Euler system,
- uniqueness of Liu solution for the Riemann problem;

Relaxation Approach

• 6 (or 5) equation system with relaxation terms;

Numerical Method

- operator splitting,
- general approximate construction of global EOS (and resolution of projection step).

LIQUID-VAPOR PHASE TRANSITION

Diffuse Interface Model

- global EOS always at equilibrium (entropy maximization),
- strict hyperbolicity of the Euler system,
- uniqueness of Liu solution for the Riemann problem;

Relaxation Approach

• 6 (or 5) equation system with relaxation terms;

Numerical Method

- operator splitting,
- general approximate construction of global EOS (and resolution of projection step).

STIFFENED GAS FOR WATER

$$(\tau_{\alpha}, \varepsilon_{\alpha}) \mapsto s_{\alpha} = c_{\nu_{\alpha}} \ln(\varepsilon_{\alpha} - q_{\alpha} - \pi_{\alpha}\tau_{\alpha}) + c_{\nu_{\alpha}}(\gamma_{\alpha} - 1) \ln \tau_{\alpha} + m_{\alpha}$$

Phase	c_{v} [J/(kg · K)]	γ	π [Pa]	<i>q</i> [J/kg]	<i>m</i> [J/(kg ⋅ K)]
Water	1816.2	2.35	10 ⁹	$-1167.056 imes 10^3$	-32765.55596
Steam	1040.14	1.43	0	$2030.255 imes 10^{3}$	-33265.65947

Table: Parameters proposed by [Le Metayer] for water.

 $(P,T) \mapsto \varepsilon_{\alpha} = c_{v_{\alpha}} T \frac{P + \pi_{\alpha} \gamma_{\alpha}}{P + \pi_{\alpha}} + q_{\alpha}, \qquad (P,T) \mapsto \tau_{\alpha} = c_{v_{\alpha}} (\gamma_{\alpha} - 1) \frac{T}{P + \pi_{\alpha}}.$ $T^{i} = 278K...610K,$ $g_{1}(P,T^{i}) = g_{2}(P,T^{i}) \Rightarrow P^{\text{sat}}(T^{i}) \end{cases} \Rightarrow \mathfrak{A} = \left\{ \left(T^{i}, P^{\text{sat}}(T^{i})\right)\right\}_{i=0}^{83}$

 ${\cal P}^{
m sat}$ defined by using a least square approximation of ${\mathfrak A}$:

$$T \mapsto P^{\mathrm{sat}}(T) \approx \widehat{P}^{\mathrm{sat}}(T) \stackrel{\mathrm{def}}{=} \exp\left(\sum_{k=-8}^{k=8} a_k T^k\right)$$

STIFFENED GAS FOR WATER

$$(\tau_{\alpha}, \varepsilon_{\alpha}) \mapsto s_{\alpha} = c_{\nu_{\alpha}} \ln(\varepsilon_{\alpha} - q_{\alpha} - \pi_{\alpha}\tau_{\alpha}) + c_{\nu_{\alpha}}(\gamma_{\alpha} - 1) \ln \tau_{\alpha} + m_{\alpha}$$

Phase	c_{v} [J/(kg · K)]	γ	π [Pa]	<i>q</i> [J/kg]	<i>m</i> [J/(kg ⋅ K)]
Water	1816.2	2.35	10 ⁹	$-1167.056 imes 10^3$	-32765.55596
Steam	1040.14	1.43	0	$2030.255 imes 10^{3}$	-33265.65947

Table: Parameters proposed by [Le Metayer] for water.

 $(P,T) \mapsto \varepsilon_{\alpha} = c_{\nu_{\alpha}} T \frac{P + \pi_{\alpha} \gamma_{\alpha}}{P + \pi_{\alpha}} + q_{\alpha}, \qquad (P,T) \mapsto \tau_{\alpha} = c_{\nu_{\alpha}} (\gamma_{\alpha} - 1) \frac{T}{P + \pi_{\alpha}}.$ $T^{i} = 278K...610K, \\g_{1}(P,T^{i}) = g_{2}(P,T^{i}) \Rightarrow P^{\text{sat}}(T^{i}) \end{cases} \Rightarrow \mathfrak{A} = \left\{ \left(T^{i}, P^{\text{sat}}(T^{i})\right)\right\}_{i=0}^{83}$

 ${\cal P}^{
m sat}$ defined by using a least square approximation of ${\mathfrak A}$:

$$T \mapsto P^{\mathrm{sat}}(T) \approx \widehat{P}^{\mathrm{sat}}(T) \stackrel{\text{def}}{=} \exp\left(\sum_{k=-8}^{k=8} a_k T^k\right)$$

STIFFENED GAS FOR WATER

$$(\tau_{\alpha}, \varepsilon_{\alpha}) \mapsto s_{\alpha} = c_{\nu_{\alpha}} \ln(\varepsilon_{\alpha} - q_{\alpha} - \pi_{\alpha}\tau_{\alpha}) + c_{\nu_{\alpha}}(\gamma_{\alpha} - 1) \ln \tau_{\alpha} + m_{\alpha}$$

Phase	<i>c</i> _ν [J/(kg ⋅ K)]	γ	π [Pa]	<i>q</i> [J/kg]	<i>m</i> [J/(kg ⋅ K)]
Water	1816.2	2.35	10 ⁹	$-1167.056 imes 10^3$	-32765.55596
Steam	1040.14	1.43	0	$2030.255 imes 10^{3}$	-33265.65947

Table: Parameters proposed by [Le Metayer] for water.

$$(P,T) \mapsto \varepsilon_{\alpha} = c_{\nu_{\alpha}} T \frac{P + \pi_{\alpha} \gamma_{\alpha}}{P + \pi_{\alpha}} + q_{\alpha}, \qquad (P,T) \mapsto \tau_{\alpha} = c_{\nu_{\alpha}} (\gamma_{\alpha} - 1) \frac{T}{P + \pi_{\alpha}}.$$
$$T^{i} = 278K \dots 610K, \\g_{1}(P,T^{i}) = g_{2}(P,T^{i}) \Rightarrow P^{\text{sat}}(T^{i}) \end{cases} \Rightarrow \mathfrak{A} = \left\{ \left(T^{i}, P^{\text{sat}}(T^{i})\right)\right\}_{i=0}^{83}$$

 ${\it P}^{
m sat}$ defined by using a least square approximation of ${\mathfrak A}$

$$T \mapsto P^{\mathrm{sat}}(T) \approx \widehat{P}^{\mathrm{sat}}(T) \stackrel{\mathrm{def}}{=} \exp\left(\sum_{k=-8}^{k=8} a_k T^k\right)$$

STIFFENED GAS FOR WATER

$$(\tau_{\alpha}, \varepsilon_{\alpha}) \mapsto s_{\alpha} = c_{\nu_{\alpha}} \ln(\varepsilon_{\alpha} - q_{\alpha} - \pi_{\alpha}\tau_{\alpha}) + c_{\nu_{\alpha}}(\gamma_{\alpha} - 1) \ln \tau_{\alpha} + m_{\alpha}$$

Phase	<i>c_v</i> [J/(kg ⋅ K)]	γ	π [Pa]	<i>q</i> [J/kg]	<i>m</i> [J/(kg ⋅ K)]
Water	1816.2	2.35	10 ⁹	$-1167.056 imes 10^3$	-32765.55596
Steam	1040.14	1.43	0	2030.255×10^3	-33265.65947

Table: Parameters proposed by [Le Metayer] for water.

$$(P,T) \mapsto \varepsilon_{\alpha} = c_{\nu_{\alpha}} T \frac{P + \pi_{\alpha} \gamma_{\alpha}}{P + \pi_{\alpha}} + q_{\alpha}, \qquad (P,T) \mapsto \tau_{\alpha} = c_{\nu_{\alpha}} (\gamma_{\alpha} - 1) \frac{T}{P + \pi_{\alpha}}.$$
$$T^{i} = 278 \text{K} \dots 610 \text{K}, \\g_{1}(P,T^{i}) = g_{2}(P,T^{i}) \Rightarrow P^{\text{sat}}(T^{i}) \end{cases} \Rightarrow \mathfrak{A} = \left\{ \left(T^{i}, P^{\text{sat}}(T^{i})\right)\right\}_{i=0}^{83}$$

 \widehat{P}^{sat} defined by using a least square approximation of \mathfrak{A} :

$$T \mapsto P^{\mathrm{sat}}(T) \approx \widehat{P}^{\mathrm{sat}}(T) \stackrel{\text{def}}{=} \exp\left(\sum_{k=-8}^{k=8} a_k T^k\right)$$

WATER TABULATED EOS

		Va	Internal Energy			
		(m	³ /kg)	(kJ/kg)		
Т (К)	P ^{sat} (MPa)	$ au_{ m liq}^{ m sat}$	$ au_{ m vap}^{ m sat}$	ϵ_{liq}^{sat}	$\varepsilon_{\rm vap}^{\rm sat}$	
275	0,00069845	0,0010001	181,60	7,7590	2377,5	
278	0,00086349	0,0010001	148,48	20,388	2381,6	
281	0,0010621	0,0010002	122,01	32,996	2385,7	
284	0,0012999	0,0010004	100,74	45,586	2389,8	
287	0,0015835	0,0010008	83,560	58,162	2393,9	
290	0,0019200	0,0010012	69,625	70,727	2398,0	
293	0,0023177	0,0010018	58,267	83,284	2402,1	
296	0,0027856	0,0010025	48,966	95,835	2406,2	
299	0,0033342	0,0010032	41,318	108,38	2410,3	
302	0,0039745	0,0010041	35,002	120,92	2414,4	
305	0,0047193	0,0010050	29,764	133,46	2418,4	
308	0,0055825	0,0010060	25,403	146	2422,5	

Source: http://webbook.nist.gov/chemistry/fluid/

WATER TABULATED EOS

$$\begin{aligned} T^{i} &= 278K \dots 610K, \\ \varepsilon^{\text{sat}}_{\alpha}(T^{i}), \ \tau^{\text{sat}}_{\alpha}(T^{i}) \text{ found in the tables } \end{aligned} \} \Rightarrow \begin{cases} \mathfrak{A} &= \left\{ \left(T_{i}, \frac{1}{\varepsilon^{\text{sat}}_{\text{vap}}(T_{i})}\right) \right\}_{i} \\ \mathfrak{B} &= \left\{ \left(T_{i}, \frac{\varepsilon^{\text{sat}}_{\text{iag}}(T_{i})}{\varepsilon^{\text{sat}}_{\text{vap}}(T_{i})}\right) \right\}_{i} \\ \mathfrak{C} &= \left\{ \left(T_{i}, \frac{1}{\tau^{\text{sat}}_{\text{vap}}(T_{i})}\right) \right\}_{i} \\ \mathfrak{D} &= \left\{ \left(T_{i}, \frac{\tau^{\text{sat}}_{\text{iag}}(T_{i})}{\varepsilon^{\text{sat}}_{\text{vap}}(T_{i})}\right) \right\}_{i} \end{cases} \end{aligned}$$

 $\hat{\epsilon}_{\alpha}^{\text{sat}}$ and $\hat{\tau}_{\alpha}^{\text{sat}}$ defined by using a least square approximation of $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ and \mathfrak{D} :

$$T \mapsto \varepsilon_{\mathrm{vap}}^{\mathrm{sat}} \approx \widehat{\varepsilon}_{\mathrm{vap}}^{\mathrm{sat}} \stackrel{\text{def}}{=} \frac{1}{\sum_{k=0}^{6} a_{k} T^{k}} \qquad T \mapsto \varepsilon_{\mathrm{liq}}^{\mathrm{sat}} \approx \widehat{\varepsilon}_{\mathrm{liq}}^{\mathrm{sat}} \stackrel{\text{def}}{=} \widehat{\varepsilon}_{\mathrm{vap}}^{\mathrm{sat}}(T) \sum_{k=0}^{6} b_{k} T^{k}$$
$$T \mapsto \tau_{\mathrm{vap}}^{\mathrm{sat}} \approx \widehat{\tau}_{\mathrm{vap}}^{\mathrm{sat}} \stackrel{\text{def}}{=} \frac{1}{\sum_{k=0}^{8} c_{k} T^{k}} \qquad T \mapsto \tau_{\mathrm{liq}}^{\mathrm{sat}} \approx \widehat{\tau}_{\mathrm{liq}}^{\mathrm{sat}} \stackrel{\text{def}}{=} \widehat{\tau}_{\mathrm{vap}}^{\mathrm{sat}}(T) \sum_{k=0}^{9} d_{k} T^{k}$$

SPEED OF SOUND

$$c^{2} \stackrel{\text{def}}{=} \tau^{2} \left(P^{\text{eq}} \left. \frac{\partial P^{\text{eq}}}{\partial \varepsilon} \right|_{\tau} - \frac{\partial P^{\text{eq}}}{\partial \tau} \right|_{\varepsilon} \right) = \underbrace{-\tau^{2} T^{\text{eq}}}_{\nu} \underbrace{\left[P^{\text{eq}}, -1 \right] \left[\begin{array}{c} s^{\text{eq}}_{\varepsilon \varepsilon} & s^{\text{eq}}_{\tau \varepsilon} \\ s^{\text{eq}}_{\tau \varepsilon} & s^{\text{eq}}_{\tau \tau} \end{array} \right] \left[\begin{array}{c} P^{\text{eq}} \\ -1 \end{array} \right]}_{\varepsilon} \le 0$$

Hessian matrix of $\mathbf{w}\mapsto oldsymbol{s}^{\mathrm{eq}}$

for all w pure phase state

 $\mathbf{v}^T \mathrm{d}^2 s^{\mathrm{eq}}(\mathbf{w}) \ \mathbf{v} < \mathsf{0} \quad \forall \ \mathbf{v}
eq \mathsf{0},$

for all w equilibrium mixture state

 $\exists \mathbf{v}(\mathbf{w}) \neq 0 \text{ s.t. } (\mathbf{v}(\mathbf{w}))^T d^2 s^{eq}(\mathbf{w}) \mathbf{v}(\mathbf{w}) = 0.$

SPEED OF SOUND

$$c^{2} \stackrel{\text{\tiny def}}{=} \tau^{2} \left(P^{\text{eq}} \left. \frac{\partial P^{\text{eq}}}{\partial \varepsilon} \right|_{\tau} - \left. \frac{\partial P^{\text{eq}}}{\partial \tau} \right|_{\varepsilon} \right) = \underbrace{-\tau^{2} T^{\text{eq}}}^{\mathsf{V}} \underbrace{\left[P^{\text{eq}}, -1 \right] \left[\begin{array}{c} s^{\text{eq}}_{\varepsilon \varepsilon} & s^{\text{eq}}_{\tau \varepsilon} \\ s^{\text{eq}}_{\tau \varepsilon} & s^{\text{eq}}_{\tau \tau} \end{array} \right] \left[\begin{array}{c} P^{\text{eq}} \\ -1 \end{array} \right]}^{\leq 0}$$

Hessian matrix of w $\mapsto oldsymbol{s}^{ ext{eq}}$

for all w pure phase state

 $\mathbf{v}^{ op} \mathrm{d}^2 s^{\mathrm{eq}}(\mathbf{w}) \ \mathbf{v} < \mathsf{0} \quad orall \ \mathbf{v}
eq \mathsf{0},$

for all w equilibrium mixture state

 $\exists \mathbf{v}(\mathbf{w}) \neq 0 \text{ s.t. } (\mathbf{v}(\mathbf{w}))^T d^2 s^{eq}(\mathbf{w}) \mathbf{v}(\mathbf{w}) = 0.$

SPEED OF SOUND

$$c^{2} \stackrel{\text{def}}{=} \tau^{2} \left(P^{\text{eq}} \left. \frac{\partial P^{\text{eq}}}{\partial \varepsilon} \right|_{\tau} - \left. \frac{\partial P^{\text{eq}}}{\partial \tau} \right|_{\varepsilon} \right) = \underbrace{-\tau^{2} T^{\text{eq}}}^{\Diamond} \left[\begin{bmatrix} P^{\text{eq}}, & -1 \end{bmatrix} \begin{bmatrix} s^{\text{eq}}_{\varepsilon \varepsilon} & s^{\text{eq}}_{\tau \varepsilon} \\ s^{\text{eq}}_{\tau \varepsilon} & s^{\text{eq}}_{\tau \tau} \end{bmatrix} \begin{bmatrix} P^{\text{eq}} \\ -1 \end{bmatrix} \right]^{\leq 0}$$

Hessian matrix of $\mathbf{w}\mapsto \boldsymbol{s}^{\mathrm{eq}}$

• for all w pure phase state

$$\mathbf{v}^T \mathrm{d}^2 s^{\mathrm{eq}}(\mathbf{w}) \ \mathbf{v} < 0 \quad \forall \ \mathbf{v}
eq 0,$$

• for all w equilibrium mixture state

$$\exists \mathbf{v}(\mathbf{w}) \neq 0 \text{ s.t. } (\mathbf{v}(\mathbf{w}))^T d^2 s^{eq}(\mathbf{w}) \mathbf{v}(\mathbf{w}) = 0.$$

SPEED OF SOUND

$$c^{2} \stackrel{\text{\tiny def}}{=} \tau^{2} \left(P^{\text{eq}} \left. \frac{\partial P^{\text{eq}}}{\partial \varepsilon} \right|_{\tau} - \left. \frac{\partial P^{\text{eq}}}{\partial \tau} \right|_{\varepsilon} \right) = \underbrace{-\tau^{2} T^{\text{eq}}}^{\diamond} \left[\begin{bmatrix} P^{\text{eq}}, & -1 \end{bmatrix} \begin{bmatrix} s^{\text{eq}}_{\varepsilon\varepsilon} & s^{\text{eq}}_{\tau\varepsilon} \\ s^{\text{eq}}_{\tau\varepsilon} & s^{\text{eq}}_{\tau\tau} \end{bmatrix} \begin{bmatrix} P^{\text{eq}} \\ -1 \end{bmatrix} \right]^{\leq 0}$$

Hessian matrix of $\mathbf{w}\mapsto \boldsymbol{s}^{eq}$

• for all w pure phase state

$$\mathbf{v}^T d^2 s^{eq}(\mathbf{w}) \ \mathbf{v} < 0 \quad \forall \ \mathbf{v} \neq \mathbf{0},$$

• for all w equilibrium mixture state

$$\exists \mathbf{v}(\mathbf{w}) \neq 0 \text{ s.t. } (\mathbf{v}(\mathbf{w}))^T d^2 s^{eq}(\mathbf{w}) \mathbf{v}(\mathbf{w}) = 0.$$

 $\forall \mathbf{w} \text{ equilibrium mixture state, } \mathbf{v}(\mathbf{w}) \stackrel{?}{\equiv} [P^{eq}(\mathbf{w}), -1]$
Appendix

SPEED OF SOUND

$$c^{2} \stackrel{\text{\tiny def}}{=} \tau^{2} \left(P^{\text{eq}} \left. \frac{\partial P^{\text{eq}}}{\partial \varepsilon} \right|_{\tau} - \left. \frac{\partial P^{\text{eq}}}{\partial \tau} \right|_{\varepsilon} \right) = \underbrace{-\tau^{2} T^{\text{eq}}}^{\diamond} \left[\begin{bmatrix} P^{\text{eq}}, & -1 \end{bmatrix} \begin{bmatrix} s^{\text{eq}}_{\varepsilon\varepsilon} & s^{\text{eq}}_{\tau\varepsilon} \\ s^{\text{eq}}_{\tau\varepsilon} & s^{\text{eq}}_{\tau\tau} \end{bmatrix} \begin{bmatrix} P^{\text{eq}} \\ -1 \end{bmatrix} \right]^{\leq 0}$$

Hessian matrix of $\mathbf{w}\mapsto \boldsymbol{s}^{eq}$

• for all w pure phase state

$$\mathbf{v}^T d^2 \mathbf{s}^{eq}(\mathbf{w}) \mathbf{v} < 0 \quad \forall \mathbf{v} \neq \mathbf{0},$$

• for all w equilibrium mixture state

$$\exists \mathbf{v}(\mathbf{w}) \neq 0 \text{ s.t. } (\mathbf{v}(\mathbf{w}))^T d^2 s^{eq}(\mathbf{w}) \mathbf{v}(\mathbf{w}) = 0.$$

 $\forall \mathbf{w} \text{ equilibrium mixture state, } \mathbf{v}(\mathbf{w}) \cong [P^{eq}(\mathbf{w}), -1]$

Appendia

ISENTROPIC CURVES

