ÉTUDE D'UN MODÈLE FIN DE CHANGEMENT DE PHASE LIQUIDE-VAPEUR Contribution à l'étude de la crise d'ébullition

Gloria Faccanoni^{1,2} Grégoire Allaire^{1,2} Samuel Kokh²

¹École Polytechnique - CMAP ²CEA Saclay - SFME/LETR

CRISE D'ÉBULLITION

Ébullition nucléée

Ébullition en film

source:http://www.spaceflight.esa.int/users/fluids/TT_boiling.htm

3 Conclusion

Construction Propriétés

2 Méthode numérique

3 Conclusion

Construction Propriétés

Système des équations d'Euler

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = \mathbf{0}, \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P) = \mathbf{0} \\ \partial_t\left(\varrho\left(\frac{|\mathbf{u}|^2}{2} + \varepsilon\right)\right) + \operatorname{div}\left(\left(\varrho\left(\frac{|\mathbf{u}|^2}{2} + \varepsilon\right) + P\right)\mathbf{u}\right) = \mathbf{0}. \end{cases}$$

- $(\mathbf{x}, t) \mapsto \varrho$ densité molaire,
- $(\mathbf{x}, t) \mapsto \varepsilon$ énergie interne molaire,
- $(\mathbf{x}, t) \mapsto \mathbf{u}$ vitesse,
- $(\varrho, \varepsilon) \mapsto P$ loi de pression.

Construction Propriétés

Système des équations d'Euler

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = \mathbf{0}, \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + \mathbf{P}) = \mathbf{0} \\ \partial_t\left(\varrho\left(\frac{|\mathbf{u}|^2}{2} + \varepsilon\right)\right) + \operatorname{div}\left(\left(\varrho\left(\frac{|\mathbf{u}|^2}{2} + \varepsilon\right) + \mathbf{P}\right)\mathbf{u}\right) = \mathbf{0}. \end{cases}$$

- $(\mathbf{x}, t) \mapsto \varrho$ densité molaire,
- $(\mathbf{x}, t) \mapsto \varepsilon$ énergie interne molaire,
- $(\mathbf{x}, t) \mapsto \mathbf{u}$ vitesse,
- $(\varrho, \varepsilon) \mapsto P$ loi de pression.

Construction Propriétés

INTERFACE LIQUIDE-VAPEUR

 $\partial_t \varphi + \mathbf{u} \cdot \mathbf{grad} \, \varphi = \mathbf{0}$

Construction Propriétés

INTERFACE LIQUIDE-VAPEUR

Construction Propriétés

INTERFACE LIQUIDE-VAPEUR

Construction Propriétés

INTERFACE DIFFUSE

✤ «Construire» ce fluide dans la zone de coexistence

- Second Gradient [C. Fouillet, D. Jamet, ...]
- Phase Field [P. Ruyer, L. Truskinovsky, ...]
- Chapman-Jouguet [O. Le Métayer, V. Perrier, R. Saurel, ...]

• . . .

Construction Propriétés

INTERFACE DIFFUSE

✤ «Construire» ce fluide dans la zone de coexistence

- Second Gradient [C. Fouillet, D. Jamet, ...]
- Phase Field [P. Ruyer, L. Truskinovsky, ...]
- Chapman-Jouguet [O. Le Métayer, V. Perrier, R. Saurel, ...]

• ...

➡ Objectifs de notre construction :

- (*ρ*, *ε*, **u**, *P*) continues (3 zones)
- Position de l'interface implicite (~> y)
- Prise en compte automatique du changement de phase
- Cohérence avec la thermodynamique classique [H. Callen]

Loi d'état pour chaque phase $\alpha = 1, 2$

_

 au_{lpha} volume molaire $arepsilon_{lpha}$ énergie interne molaire

$$\Rightarrow \quad \mathbf{W}_{lpha} \stackrel{\text{\tiny def}}{=} (au_{lpha}, arepsilon_{lpha});$$

 $\mathbf{w}_{\alpha} \mapsto \mathbf{s}_{\alpha}$ entropie molaire (d'hessienne déf. strict. nég.);

$$\begin{cases} T_{\alpha} \stackrel{\text{def}}{=} \left(\frac{\partial \mathbf{s}_{\alpha}}{\partial \varepsilon_{\alpha}} \Big|_{\tau_{\alpha}} \right)^{-1} > 0 \quad \text{température,} \\ P_{\alpha} \stackrel{\text{def}}{=} T_{\alpha} \left. \frac{\partial \mathbf{s}_{\alpha}}{\partial \tau_{\alpha}} \right|_{\varepsilon_{\alpha}} > 0 \quad \text{pression,} \\ g_{\alpha} \stackrel{\text{def}}{=} \varepsilon_{\alpha} + P_{\alpha} \tau_{\alpha} - T_{\alpha} \mathbf{s}_{\alpha} \quad \text{enthalpie libre (potentiel de Generality)} \end{cases}$$

Loi d'état pour chaque phase $\alpha = 1, 2$

 τ_{α} volume molaire ε_{α} énergie interne molaire

$$\Rightarrow \mathbf{W}_{\alpha} \stackrel{\text{\tiny def}}{=} (\tau_{\alpha}, \varepsilon_{\alpha});$$

 $\mathbf{w}_{\alpha} \mapsto \mathbf{s}_{\alpha}$ entropie molaire (d'hessienne déf. strict. nég.);

$$\begin{cases} T_{\alpha} \stackrel{\text{def}}{=} \left(\frac{\partial s_{\alpha}}{\partial \varepsilon_{\alpha}} \Big|_{\tau_{\alpha}} \right)^{-1} > 0 \quad \text{température,} \\ P_{\alpha} \stackrel{\text{def}}{=} T_{\alpha} \left. \frac{\partial s_{\alpha}}{\partial \tau_{\alpha}} \right|_{\varepsilon_{\alpha}} > 0 \quad \text{pression,} \\ g_{\alpha} \stackrel{\text{def}}{=} \varepsilon_{\alpha} + P_{\alpha} \tau_{\alpha} - T_{\alpha} s_{\alpha} \quad \text{enthalpie libre (potentiel de Gi} \end{cases}$$

Loi d'état pour chaque phase $\alpha=1,2$

 τ_{α} volume molaire ε_{α} énergie interne molaire

$$\Rightarrow \mathbf{w}_{\alpha} \stackrel{\text{\tiny def}}{=} (\tau_{\alpha}, \varepsilon_{\alpha});$$

 $\mathbf{w}_{\alpha} \mapsto \mathbf{s}_{\alpha}$ entropie molaire (d'hessienne déf. strict. nég.);

$$\begin{cases} T_{\alpha} \stackrel{\text{def}}{=} \left(\frac{\partial \mathbf{s}_{\alpha}}{\partial \varepsilon_{\alpha}} \Big|_{\tau_{\alpha}} \right)^{-1} > 0 \quad \text{température,} \\ P_{\alpha} \stackrel{\text{def}}{=} T_{\alpha} \left. \frac{\partial \mathbf{s}_{\alpha}}{\partial \tau_{\alpha}} \right|_{\varepsilon_{\alpha}} > 0 \quad \text{pression,} \\ g_{\alpha} \stackrel{\text{def}}{=} \varepsilon_{\alpha} + P_{\alpha} \tau_{\alpha} - T_{\alpha} \mathbf{s}_{\alpha} \quad \text{enthalpie libre (potentiel de Gibbs).} \end{cases}$$

Construction Propriétés

LOI D'ÉTAT <u>SANS</u> CHANGEMENT DE PHASE

- $\mathbf{W} \stackrel{\text{def}}{=} \sum_{\alpha} y_{\alpha} \mathbf{W}_{\alpha}$;
- y_{α} fraction de masse, $\sum_{\alpha} y_{\alpha} = 1$;
- z_{α} fraction de volume, $\sum_{\alpha} z_{\alpha} = 1$ et $y_{\alpha}\tau_{\alpha} = z_{\alpha}\tau$;
- ψ_{α} fraction d'énergie, $\sum_{\alpha} \psi_{\alpha} = 1$ et $y_{\alpha} \varepsilon_{\alpha} = \psi_{\alpha} \varepsilon$.

Construction Propriétés

LOI D'ÉTAT <u>SANS</u> CHANGEMENT DE PHASE

•
$$\mathbf{w} \stackrel{\text{def}}{=} \sum_{\alpha} y_{\alpha} \mathbf{w}_{\alpha};$$

- y_{α} fraction de masse, $\sum_{\alpha} y_{\alpha} = 1$;
- z_{α} fraction de volume, $\sum_{\alpha} z_{\alpha} = 1$ et $y_{\alpha} \tau_{\alpha} = z_{\alpha} \tau$;
- ψ_{α} fraction d'énergie, $\sum_{\alpha} \psi_{\alpha} = 1$ et $y_{\alpha} \varepsilon_{\alpha} = \psi_{\alpha} \varepsilon$.

Entropie sans changement de phase

$$\sigma \stackrel{\text{\tiny def}}{=} \sum_{\alpha} y_{\alpha} s_{\alpha}(\mathbf{w}_{\alpha}) = \sum_{\alpha} y_{\alpha} s_{\alpha} \left(\frac{z_{\alpha}}{y_{\alpha}} \tau, \frac{\psi_{\alpha}}{y_{\alpha}} \varepsilon \right)$$

Construction Propriétés

LOI D'ÉTAT <u>SANS</u> CHANGEMENT DE PHASE

•
$$\mathbf{w} \stackrel{\text{def}}{=} \sum_{\alpha} y_{\alpha} \mathbf{w}_{\alpha}$$
;

- y_{α} fraction de masse, $\sum_{\alpha} y_{\alpha} = 1$;
- z_{α} fraction de volume, $\sum_{\alpha} z_{\alpha} = 1$ et $y_{\alpha} \tau_{\alpha} = z_{\alpha} \tau$;

•
$$\psi_{\alpha}$$
 fraction d'énergie, $\sum_{\alpha} \psi_{\alpha} = 1$ et $y_{\alpha} \varepsilon_{\alpha} = \psi_{\alpha} \varepsilon$.

Entropie sans changement de phase

$$\sigma \stackrel{\text{\tiny def}}{=} \sum_{\alpha} \mathbf{y}_{\alpha} \mathbf{s}_{\alpha} (\mathbf{w}_{\alpha}) = \sum_{\alpha} \mathbf{y}_{\alpha} \mathbf{s}_{\alpha} \left(\frac{\mathbf{z}_{\alpha}}{\mathbf{y}_{\alpha}} \tau, \frac{\psi_{\alpha}}{\mathbf{y}_{\alpha}} \varepsilon \right)$$

Condition d'optimalité : $T_1 = T_2$, $P_1 = P_2$, $g_1 = g_2$.

 $\mathbf{w}_{\alpha}^{*} \stackrel{\text{\tiny def}}{=}$ solution du problème d'optimisation.

Construction Propriétés

Construction de $\mathbf{w} \mapsto \mathbf{s}^{eq}$

$$s^{\mathsf{eq}} \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \max_{y} \sum_{\alpha} y_{\alpha} s_{\alpha}(\mathbf{w}_{\alpha})$$

Construction Propriétés

Construction de $\mathbf{w} \mapsto \mathbf{s}^{eq}$

Construction Propriétés

Construction Propriétés

Construction de $\mathbf{w} \mapsto \mathbf{s}^{eq}$

Construction Propriétés

CINÉMATIQUE DU CHANGEMENT DE PHASE

Équations d'évolution

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = \mathbf{0}, \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + \mathbf{P}^{eq}) = \mathbf{0} \\ \partial_t \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \right) + \operatorname{div} \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \mathbf{u} + \mathbf{P}^{eq} \right) \mathbf{u} \right) = \mathbf{0} \\ \text{avec} \quad \mathbf{P}^{eq} \stackrel{\text{def}}{=} \frac{\mathbf{S}_{\tau}^{eq}}{\mathbf{S}_{\varepsilon}^{eq}}. \end{cases}$$

Questions :

- Hyperbolicité
- Problème de Riemann

Construction Propriétés

CINÉMATIQUE DU CHANGEMENT DE PHASE

Équations d'évolution

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = \mathbf{0}, \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + \mathbf{P}^{\operatorname{eq}}) = \mathbf{0} \\ \partial_t \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \right) + \operatorname{div} \left(\varrho \left(\frac{|\mathbf{u}|^2}{2} + \varepsilon \right) \mathbf{u} + \mathbf{P}^{\operatorname{eq}} \right) \mathbf{u} \right) = \mathbf{0} \\ \text{avec} \quad \mathbf{P}^{\operatorname{eq}} \stackrel{\text{def}}{=} \frac{\mathbf{S}_{\varepsilon}^{\operatorname{eq}}}{\mathbf{S}_{\varepsilon}^{\operatorname{eq}}}. \end{cases}$$

Questions :

- Hyperbolicité
- Problème de Riemann

Construction Propriétés

1 Hyperbolicité : spectre de la Jacobienne

$$\partial_t \begin{pmatrix} \tau \\ u \\ \varepsilon \end{pmatrix} + \left[\begin{pmatrix} u & -\tau & 0 \\ \tau \frac{\partial P^{eq}}{\partial \tau} \\ 0 & \tau P^{eq} & u \end{pmatrix}_{\tau} \frac{\partial P^{eq}}{\partial \varepsilon} \\ 0 \end{pmatrix}_{\tau} \partial_x \begin{pmatrix} \tau \\ u \\ \varepsilon \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Valeurs propres : λ₁ = u - c, λ₂ = u, λ₃ = u + c
Vecteurs propres (à droite) associés :

$$\mathbf{r}_{1} = \begin{pmatrix} \tau \\ \mathbf{c} \\ \tau \boldsymbol{P}^{\mathrm{eq}} \end{pmatrix}, \qquad \mathbf{r}_{2} = \begin{pmatrix} \partial \boldsymbol{P}^{\mathrm{eq}} / \partial \varepsilon \\ \mathbf{0} \\ -\partial \boldsymbol{P}^{\mathrm{eq}} / \partial \tau \end{pmatrix}, \qquad \mathbf{r}_{3} = \begin{pmatrix} -\tau \\ \mathbf{c} \\ \tau \boldsymbol{P}^{\mathrm{eq}} \end{pmatrix},$$

où c est la vitesse du son dont le carré s'écrit

$$\boldsymbol{c}^{2} = \tau^{2} \left(\boldsymbol{P}^{\text{eq}} \left. \frac{\partial \boldsymbol{P}^{\text{eq}}}{\partial \varepsilon} \right|_{\tau} - \left. \frac{\partial \boldsymbol{P}^{\text{eq}}}{\partial \tau} \right|_{\varepsilon} \right)$$

Construction Propriétés

1 Hyperbolicité : spectre de la Jacobienne

$$\partial_t \begin{pmatrix} \tau \\ u \\ \varepsilon \end{pmatrix} + \left[\begin{pmatrix} u \\ \tau \frac{\partial P^{eq}}{\partial \tau} \\ 0 \\ \varepsilon \\ \tau P^{eq} \\ 0 \\ \tau P^{eq} \\ u \\ \tau \end{pmatrix}^{-\tau} \frac{0}{\partial \varepsilon} \\ \frac{\partial P^{eq}}{\partial \varepsilon}$$

Valeurs propres : λ₁ = u - c, λ₂ = u, λ₃ = u + c
Vecteurs propres (à droite) associés :

$$\mathbf{r}_1 = \begin{pmatrix} \tau \\ \mathbf{c} \\ \tau \mathbf{P}^{eq} \end{pmatrix}, \qquad \mathbf{r}_2 = \begin{pmatrix} \partial P^{eq} / \partial \varepsilon \\ \mathbf{0} \\ -\partial P^{eq} / \partial \tau \end{pmatrix}, \qquad \mathbf{r}_3 = \begin{pmatrix} -\tau \\ \mathbf{c} \\ \tau \mathbf{P}^{eq} \end{pmatrix},$$

où c est la vitesse du son dont le carré s'écrit

$$\mathcal{C}^2 = au^2 \left(\mathcal{P}^{\mathrm{eq}} \left. rac{\partial \mathcal{P}^{\mathrm{eq}}}{\partial arepsilon} \right|_{ au} - \left. rac{\partial \mathcal{P}^{\mathrm{eq}}}{\partial au} \right|_{arepsilon}
ight)$$

Construction **Propriétés**

Hyperbolicité du système d'Euler

- si c > 0 alors λ_i ∈ ℝ et λ_i ≠ λ_j pour i ≠ j donc le système est strictement hyperbolique (ex. système d'Euler avec P dans une phase pure),
- si c = 0 alors λ_i ∈ ℝ mais la jacobienne n'est pas diagonalisable et donc le système est faiblement hyperbolique (ex. p-système avec changement de phase),
- si c < 0 alors λ_{1,3} ∈ C \ ℝ donc le système est non hyperbolique (ex. système d'Euler avec P de Van der Waals).

Construction Propriétés

Hyperbolicité du système d'Euler

- si c > 0 alors λ_i ∈ ℝ et λ_i ≠ λ_j pour i ≠ j donc le système est strictement hyperbolique (ex. système d'Euler avec P dans une phase pure),
- si c = 0 alors λ_i ∈ ℝ mais la jacobienne n'est pas diagonalisable et donc le système est faiblement hyperbolique (ex. p-système avec changement de phase),
- si c < 0 alors λ_{1,3} ∈ C \ ℝ donc le système est non hyperbolique (ex. système d'Euler avec P de Van der Waals).

Avec le changement de phase $c \stackrel{?}{>} 0$

Construction **Propriétés**

Hyperbolicité du système d'Euler

- si c > 0 alors λ_i ∈ ℝ et λ_i ≠ λ_j pour i ≠ j donc le système est strictement hyperbolique (ex. système d'Euler avec P dans une phase pure),
- si c = 0 alors λ_i ∈ ℝ mais la jacobienne n'est pas diagonalisable et donc le système est faiblement hyperbolique (ex. p-système avec changement de phase),
- si c < 0 alors λ_{1,3} ∈ C \ ℝ donc le système est non hyperbolique (ex. système d'Euler avec P de Van der Waals).

Avec le changement de phase
$$c \stackrel{?}{>} 0$$

Remarque

$$c^{2} = -\tau^{2} T^{eq} \begin{bmatrix} P^{eq}, & -1 \end{bmatrix} \begin{bmatrix} s^{eq}_{\varepsilon\varepsilon} & s^{eq}_{\tau\varepsilon} \\ s^{eq}_{\tau\varepsilon} & s^{eq}_{\tau\tau} \end{bmatrix} \begin{bmatrix} P^{eq} \\ -1 \end{bmatrix}$$

Construction Propriétés

PROBLÈME DE RIEMANN

Non unicité des solutions entropiques [R. Menikoff, B.J. Plohr]

↓ Critère(s) de sélection?

Constructior Propriétés

ENVELOPPE CONCAVE

Hessienne de $\mathbf{w} \mapsto \mathbf{s}^{eq}$

 $\begin{aligned} \forall \mathbf{w} \text{ état phasique : } \mathbf{v}^{\mathsf{T}} d^2 s^{\mathrm{eq}}(\mathbf{w}) \mathbf{v} < 0 \quad \forall \mathbf{v} \neq \mathbf{0}, \\ \forall \mathbf{w} \text{ état de coexistence : } \exists \mathbf{v}(\mathbf{w}) \neq \mathbf{0} \text{ tq } (\mathbf{v}(\mathbf{w}))^{\mathsf{T}} d^2 s^{\mathrm{eq}}(\mathbf{w}) \mathbf{v}(\mathbf{w}) = \mathbf{0}. \end{aligned}$

• Hyperbolicité : $\forall w \text{ état de coexistence, } v(w) \stackrel{?}{=} [P^{eq}(w), -1]$

Construction Propriétés

ENVELOPPE CONCAVE

Hessienne de $\mathbf{w} \mapsto \mathbf{s}^{eq}$

 $\begin{array}{l} \forall \textbf{w} \text{ \acute{e}tat phasique : } \textbf{v}^{\mathcal{T}} \, \mathrm{d}^{2} s^{\mathrm{eq}}(\textbf{w}) \textbf{v} < 0 \quad \forall \textbf{v} \neq \textbf{0}, \\ \forall \textbf{w} \text{ \acute{e}tat de coexistence : } \exists \textbf{v}(\textbf{w}) \neq \textbf{0} \text{ tq } (\textbf{v}(\textbf{w}))^{\mathcal{T}} \, \mathrm{d}^{2} s^{\mathrm{eq}}(\textbf{w}) \textbf{v}(\textbf{w}) = \textbf{0}. \end{array}$

• Hyperbolicité : $\forall w \text{ état de coexistence, } v(w) \stackrel{?}{=} [P^{eq}(w), -1]$
Construction Propriétés

ENVELOPPE CONCAVE

Hessienne de $\mathbf{w} \mapsto \mathbf{s}^{eq}$

 $\begin{array}{l} \forall \textbf{w} \text{ \acute{e}tat phasique : } \textbf{v}^{\mathcal{T}} \, \mathrm{d}^{2} s^{\mathrm{eq}}(\textbf{w}) \textbf{v} < 0 \quad \forall \textbf{v} \neq \textbf{0}, \\ \forall \textbf{w} \text{ \acute{e}tat de coexistence : } \exists \textbf{v}(\textbf{w}) \neq 0 \text{ tq } (\textbf{v}(\textbf{w}))^{\mathcal{T}} \, \mathrm{d}^{2} s^{\mathrm{eq}}(\textbf{w}) \textbf{v}(\textbf{w}) = 0. \end{array}$

• Hyperbolicité : $\forall \mathbf{w} \text{ état de coexistence, } \mathbf{v}(\mathbf{w}) \stackrel{?}{\equiv} [P^{eq}(\mathbf{w}), -1]$

Construction Propriétés

UNICITÉ DU SEGMENT **V**(**W**)

Théorème (G. Allaire, G. Faccanoni and S. Kokh)

Soit $\mathbf{w} \stackrel{\text{\tiny def}}{=} (\tau, \varepsilon)$ un «état saturé». Si $\tau_1^* \neq \tau_2^*$ et $\varepsilon_1^* \neq \varepsilon_2^*$ alors

O UNICITÉ : il existe un et un seul $\mathbf{v}(\mathbf{w}) \stackrel{\text{def}}{=} \mathfrak{r}_{12}(\mathbf{w}) \neq 0$ tel que $(\mathbf{v}(\mathbf{w}))^T d^2 s^{\text{eq}}(\mathbf{w}) \mathbf{v}(\mathbf{w}) = 0.$

avec $(\tau_{\alpha}^*, \varepsilon_{\alpha}^*)$ extrémités du segment $\mathfrak{r}_{12}(\mathbf{w}) \ni \mathbf{w}$.

Construction Propriétés

Unicité du segment $\mathbf{v}(\mathbf{w})$

Théorème (G. Allaire, G. Faccanoni and S. Kokh)

Soit $\mathbf{w} \stackrel{\text{\tiny def}}{=} (\tau, \varepsilon)$ un «état saturé». Si $\tau_1^* \neq \tau_2^*$ et $\varepsilon_1^* \neq \varepsilon_2^*$ alors

• UNICITÉ : il existe un et un seul $\mathbf{v}(\mathbf{w}) \stackrel{\text{def}}{=} \mathfrak{r}_{12}(\mathbf{w}) \neq 0$ tel que $(\mathbf{v}(\mathbf{w}))^T d^2 s^{\text{eq}}(\mathbf{w}) \mathbf{v}(\mathbf{w}) = 0.$

avec $(\tau_{\alpha}^*, \varepsilon_{\alpha}^*)$ extrémités du segment $\mathfrak{r}_{12}(\mathbf{w}) \ni \mathbf{w}$.

Construction Propriétés

UNICITÉ DU SEGMENT **V**(**W**)

Théorème (G. Allaire, G. Faccanoni and S. Kokh)

Soit $\mathbf{w} \stackrel{\text{\tiny def}}{=} (\tau, \varepsilon)$ un «état saturé». Si $\tau_1^* \neq \tau_2^*$ et $\varepsilon_1^* \neq \varepsilon_2^*$ alors

• UNICITÉ : il existe un et un seul $\mathbf{v}(\mathbf{w}) \stackrel{\text{def}}{=} \mathfrak{r}_{12}(\mathbf{w}) \neq 0$ tel que $(\mathbf{v}(\mathbf{w}))^T d^2 s^{\text{eq}}(\mathbf{w}) \mathbf{v}(\mathbf{w}) = 0.$

$$s^{eq}_{\tau\tau}, s^{eq}_{\varepsilon\varepsilon} < 0, \quad s^{eq}_{\tau\varepsilon} \neq 0; \quad P \neq -\frac{\varepsilon_1^* - \varepsilon_2^*}{\tau_1^* - \tau_2^*}, \quad T \neq \frac{\varepsilon_1^* - \varepsilon_2^*}{s_1^* - s_2^*}$$

avec $(\tau^*_{\alpha}, \varepsilon^*_{\alpha})$ extrémités du segment $\mathfrak{r}_{12}(\mathbf{w}) \ni \mathbf{w}.$

Pour les Gaz Parfaits il faut que $c_{v_1} \neq c_{v_2}$ ______ (\neq [R. Menikoff, B.J. Plohr], [S. Jaouen], [Ph. Helluy, N. Seguin], ...)

Corollaire

 $\begin{array}{l} \text{Soit } \mathbf{w} \stackrel{\text{\tiny def}}{=} (\tau, \varepsilon) \text{ un } \text{ ``etat saturé `". Si } \tau_1^* \neq \tau_2^* \text{ et } \varepsilon_1^* \neq \varepsilon_2^* \text{ alors } \\ \hline \mathbf{0} \ c(\mathbf{w}) > 0, \qquad \mathbf{@} \ s_{\tau\varepsilon}^{\text{eq}}(\mathbf{w}) > 0 \end{array}$

Réponses

● le système d'Euler est strictement hyperbolique (≠ p-système),

il existe une unique solution de Liu.

Solution physique $\stackrel{\text{\tiny def}}{=}$ l'unique solution de Liu

Corollaire

 $\begin{array}{l} \text{Soit } \mathbf{w} \stackrel{\text{\tiny def}}{=} (\tau, \varepsilon) \text{ un } \text{ ``etat saturé `". Si } \tau_1^* \neq \tau_2^* \text{ et } \varepsilon_1^* \neq \varepsilon_2^* \text{ alors} \\ \hline \mathbf{0} \ c(\mathbf{w}) > \mathbf{0}, \qquad \textcircled{S}_{\tau\varepsilon}^{\text{eq}}(\mathbf{w}) > \mathbf{0} \end{array}$

Réponses

• le système d'Euler est strictement hyperbolique (\neq p-système),

2 il existe une unique solution de Liu.

Solution physique $\stackrel{\text{\tiny def}}{=}$ l'unique solution de Liu

Corollaire

Soit $\mathbf{w} \stackrel{\text{def}}{=} (\tau, \varepsilon)$ un «état saturé». Si $\tau_1^* \neq \tau_2^*$ et $\varepsilon_1^* \neq \varepsilon_2^*$ alors $\mathbf{0} \ c(\mathbf{w}) > 0$, $\mathbf{v} \ s_{\tau_{\varepsilon}}^{eq}(\mathbf{w}) > 0$

Réponses

• le système d'Euler est strictement hyperbolique (\neq p-système),

il existe une unique solution de Liu.

Solution physique $\stackrel{\text{\tiny def}}{=}$ l'unique solution de Liu

Corollaire

 $\begin{array}{l} \text{Soit } \mathbf{w} \stackrel{\text{\tiny def}}{=} (\tau, \varepsilon) \text{ un } \text{ ``etat saturé ``. Si } \tau_1^* \neq \tau_2^* \text{ et } \varepsilon_1^* \neq \varepsilon_2^* \text{ alors } \\ \mathbf{0} \ c(\mathbf{w}) > \mathbf{0}, \qquad \mathbf{ @ } s_{\tau \varepsilon}^{\text{eq}}(\mathbf{w}) > \mathbf{0} \end{array}$

Réponses

- le système d'Euler est strictement hyperbolique (\neq p-système),
- il existe une unique solution de Liu.

Solution physique $\stackrel{\text{def}}{=}$ l'unique solution de Liu

Approche par relaxation Mise en œuvre Exemple(s)

2 Méthode numérique

- Approche par relaxation
- Mise en œuvre
- Exemple(s)

- Solveur de Riemann exact [A. Voß]
- Solveur qui capture l'unique solution qui admette un profil visqueux [S. Jaouen]
- Solveur(s) basé(s) sur une approche par relaxation [F. Coquel, B. Perthame], [Th. Barberon, Ph. Helluy], [Ph. Helluy, N. Seguin], ...

• Solveur de Riemann exact [A. Voß]

- Solveur qui capture l'unique solution qui admette un profil visqueux [S. Jaouen]
- Solveur(s) basé(s) sur une approche par relaxation [F. Coquel, B. Perthame], [Th. Barberon, Ph. Helluy], [Ph. Helluy, N. Seguin], ...

- Solveur de Riemann exact [A. Voß]
- Solveur qui capture l'unique solution qui admette un profil visqueux [S. Jaouen]
- Solveur(s) basé(s) sur une approche par relaxation [F. Coquel, B. Perthame], [Th. Barberon, Ph. Helluy], [Ph. Helluy, N. Seguin], ...

- Solveur de Riemann exact [A. Voß]
- Solveur qui capture l'unique solution qui admette un profil visqueux [S. Jaouen]
- Solveur(s) basé(s) sur une approche par relaxation [F. Coquel, B. Perthame], [Th. Barberon, Ph. Helluy], [Ph. Helluy, N. Seguin], ...

Approche par relaxation Mise en œuvre Exemple(s)

APPROCHE PAR RELAXATION

 $\partial_t \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$

Approche par relaxation Mise en œuvre Exemple(s)

APPROCHE PAR RELAXATION

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V}) \qquad \xrightarrow{\text{Formellement}} \qquad \partial_t \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$$

 $\frac{1}{\mu} \stackrel{\text{\tiny def}}{=} \text{paramètre de relaxation}$

Approche par relaxation Mise en œuvre Exemple(s)

APPROCHE PAR RELAXATION

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V}) \qquad \xrightarrow{\text{Formellement}} \qquad \partial_t \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$$

$$\begin{aligned} & \text{Système à saturation} \\ & \left\{ \begin{aligned} & \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = \mathbf{0} \\ & \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P^{\text{eq}}) = \mathbf{0} \\ & \partial_t(\varrho e) + \operatorname{div}((\varrho e + P^{\text{eq}})\mathbf{u}) = \mathbf{0} \end{aligned} \right. \\ & \mathcal{P}^{\text{eq}}(\varrho, \varepsilon) = \frac{\mathbf{S}_{\tau}^{\text{eq}}}{\mathbf{S}_{\tau}^{\text{eq}}}, \quad \mathbf{e} \stackrel{\text{def}}{=} \frac{|\mathbf{u}|^2}{2} + \varepsilon \end{aligned}$$

Approche par relaxation Mise en œuvre Exemple(s)

APPROCHE PAR RELAXATION

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V}) \qquad \xrightarrow{\operatorname{Formellement}} \qquad \partial_t \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$$

2 fluides, 1 vitesse $\begin{cases}
\partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0 \\
\partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P) = 0 \\
\partial_t(\varrho \mathbf{e}) + \operatorname{div}((\varrho \mathbf{e} + P)\mathbf{u}) = 0
\end{cases}$ $P(\varrho, \varepsilon, \mathbf{z}, \mathbf{y}, \psi) = \frac{\sigma_\tau}{\sigma_{\varepsilon}}$

 $\begin{aligned} & \text{Système à saturation} \\ & \left\{ \begin{aligned} & \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = \mathbf{0} \\ & \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P^{\text{eq}}) = \mathbf{0} \\ & \partial_t(\varrho e) + \operatorname{div}((\varrho e + P^{\text{eq}})\mathbf{u}) = \mathbf{0} \end{aligned} \right. \\ & P^{\text{eq}}(\varrho, \varepsilon) = \frac{\mathbf{S}_{\tau}^{\text{eq}}}{\mathbf{S}_{\varepsilon}^{\text{eq}}}, \quad \mathbf{e} \stackrel{\text{def}}{=} \frac{|\mathbf{u}|^2}{2} + \varepsilon \end{aligned}$

 $\frac{1}{\mu} \stackrel{\text{\tiny def}}{=} \text{paramètre de relaxation}$

Approche par relaxation Mise en œuvre Exemple(s)

APPROCHE PAR RELAXATION

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V}) \qquad \xrightarrow{\text{Formellement}} \qquad \partial_t \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$$

2 fluides, 1 vitesse

$$\begin{cases}
\partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0 \\
\partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P) = 0 \\
\partial_t(\varrho e) + \operatorname{div}((\varrho e + P)\mathbf{u}) = 0
\end{cases}$$

$$\begin{cases}
\partial_t z + \mathbf{u} \cdot \operatorname{\mathbf{grad}} z = \\
\partial_t z + \mathbf{u} \cdot \operatorname{\mathbf{grad}} y = \\
\partial_t \psi + \mathbf{u} \cdot \operatorname{\mathbf{grad}} \psi = \\
P(\varrho, \varepsilon, z, y, \psi) = \frac{\sigma_\tau}{\sigma_\varepsilon}
\end{cases}$$

Système à saturation		
$\int \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0$		
$\left\{ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P^{eq}) = 0 \right.$		
$\int \partial_t(\varrho e) + \operatorname{div}((\varrho e + P^{eq})\mathbf{u}) = 0$		
$P^{eq}(\varrho, arepsilon) = rac{\mathbf{s}^{eq}_{ au}}{\mathbf{s}^{eq}_{arepsilon}}, \mathbf{e} \stackrel{ ext{def}}{=} rac{ \mathbf{u} ^2}{2} + arepsilon$		

Approche par relaxation Mise en œuvre Exemple(s)

APPROCHE PAR RELAXATION

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V}) \qquad \xrightarrow{\text{Formellement}} \qquad \partial_t \mathbf{U} + \operatorname{div} \mathbf{F}(\mathbf{U}) = \mathbf{0}$$

Formellement $\mu \rightarrow 0$

$$\begin{array}{l} 2 \mbox{ fluides, 1 vitesse} \\ \left\{ \begin{array}{l} \partial_t \varrho + {\rm div}(\varrho {\bf u}) = 0 \\ \partial_t(\varrho {\bf u}) + {\rm div}(\varrho {\bf u} \otimes {\bf u} + P) = 0 \\ \partial_t(\varrho e) + {\rm div}((\varrho e + P) {\bf u}) = 0 \end{array} \right. \\ \left\{ \begin{array}{l} \partial_t z + {\bf u} \cdot {\bf grad} \ z = \frac{1}{\mu} \left(\frac{P_2}{T_2} - \frac{P_1}{T_1} \right) \\ \partial_t y + {\bf u} \cdot {\bf grad} \ y = \frac{1}{\mu} \left(\frac{g_1}{T_1} - \frac{g_2}{T_2} \right) \frac{1}{\varrho} \\ \partial_t \psi + {\bf u} \cdot {\bf grad} \ \psi = \frac{1}{\mu} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \varepsilon \end{array} \right. \\ \left. P(\varrho, \varepsilon, z, y, \psi) = \frac{\sigma_\tau}{\sigma_\varepsilon} \end{array}$$

$$\begin{cases} \text{Système à saturation} \\ \\ \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0 \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u} + P^{\text{eq}}) = 0 \\ \partial_t(\varrho e) + \operatorname{div}((\varrho e + P^{\text{eq}})\mathbf{u}) = 0 \end{cases} \\ P^{\text{eq}}(\varrho, \varepsilon) = \frac{\mathbf{s}_{\tau}^{\text{eq}}}{\mathbf{s}_{\varepsilon}^{\text{eq}}}, \quad \mathbf{e}^{\frac{\text{se}}{2}} \frac{|\mathbf{u}|^2}{2} + \varepsilon \end{cases}$$

 $\frac{1}{\mu} \stackrel{\text{\tiny def}}{=} \text{paramètre de relaxation}: \text{temps de retour à l'équilibre.}$

Approche par relaxation Mise en œuvre Exemple(s)

SCHÉMA À PAS FRACTIONNAIRES

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V})$$

- O ∂_tψ + u + grad ψ = 0 → T₁ = T₂ [G. Allaire, S. Clerc et S. Kokh], [S. Kokh et F. Lagoutiêre], ...
- Pour les gaz parfaits résolution d'une équation non linéaire, sinon QHull (http://www.ghull.corg) ou Inf-convolution [L. Corrias, Y. Lucet,]

Approche par relaxation Mise en œuvre Exemple(s)

SCHÉMA À PAS FRACTIONNAIRES

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V})$$

Pour les gaz parfaits résolution d'une équation non linéaire, sinon QHull (http://www.ghull.org) ou Inf-convolution [L. Corrias, Y. Lucet,...]

Approche par relaxation Mise en œuvre Exemple(s)

SCHÉMA À PAS FRACTIONNAIRES

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V})$$

Pour les gaz parfaits résolution d'une équation non linéaire, sinon QHull (http://www.ghull.org) ou Inf-convolution [L. Corrias, Y. Lucet,...]

Approche par relaxation Mise en œuvre Exemple(s)

SCHÉMA À PAS FRACTIONNAIRES

● ∂_tψ + u · grad ψ = 0 → T₁ = T₂ [G. Allaire, S. Clerc et S. Kokh], [S. Kokh et F. Lagoutière], ...

Pour les gaz parfaits résolution d'une équation non linéaire, sinon QHull (http://www.ghull.org) ou Inf-convolution [L. Corrias, Y. Lucet,...]

Approche par relaxation Mise en œuvre Exemple(s)

SCHÉMA À PAS FRACTIONNAIRES

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V})$$

O ∂_tψ + u · grad ψ = 0 → T₁ = T₂ [G. Allaire, S. Clerc et S. Kokh], [S. Kokh et F. Lagoutière], ...

Pour les gaz parfaits résolution d'une équation non linéaire, sinon QHull (http://www.ghull.org) ou Inf-convolution [L. Corrias, Y. Lucet, ...]

Approche par relaxation Mise en œuvre Exemple(s)

SCHÉMA À PAS FRACTIONNAIRES

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{G}(\mathbf{V}) = \frac{1}{\mu} \mathbf{R}(\mathbf{V})$$

● ∂_ℓψ + u · grad ψ = 0 → T₁ = T₂ [G. Allaire, S. Clerc et S. Kokh], [S. Kokh et F. Lagoutière], ...

Pour les gaz parfaits résolution d'une équation non linéaire, sinon QHull (http://www.ghull.org) ou Inf-convolution [L. Corrias, Y. Lucet, ...]

Modèle	Approche par relaxation
éthode numérique	Mise en œuvre
Conclusion	Exemple(s)

М

CAS TEST

Lois d'état :
$$\mathbf{w} \mapsto s_{\alpha} \stackrel{\text{def}}{=} c_{\nu_{\alpha}} \ln \left(\varepsilon \tau^{\gamma_{\alpha}-1} \right)$$
LiquideVAPEUR c_{ν} $[\mathbf{J} \cdot \mathbf{k} \mathbf{g}^{-1} \cdot \mathbf{K}^{-1}]$ 1040.141816.2 γ $(= c_{p}/c_{\nu})$ 1.432.35 ϑ $[\mathbf{J} \mathbf{K} \mathbf{m}^{-1} \mathbf{s}^{-1}]$ $\mathbf{6} \ 10^4$ 23 10^3

Données du problème de Riemann

$T _{t=0} = 300 \text{ K}$	partout
$(P, \tau_1) _{t=0}(T)$	à saturation
u = 0 m/s	partout

Géometrie

Phénomènes

- Oynamique
- Diffusion de la chaleur
- Capillarité
- Gravité
- Changement de phase

mesh : 80×80 ; $t_{final} = 1 s$

Approche par relaxation Mise en œuvre **Exemple(s)**

CAS TEST

Modèle	
Méthode numérique	
Conclusion	

Approche par relaxation Mise en œuvre Exemple(s)

CAS TEST

Lois d'état : $\mathbf{w} \mapsto \mathbf{s}_{\alpha} \stackrel{\text{\tiny def}}{=} \mathbf{c}_{\mathbf{v}_{\alpha}} \ln \left(\varepsilon \tau^{\gamma_{\alpha} - 1} \right)$				
		Liquide	VAPEUR	
C_V	[J⋅kg ⁻¹ ⋅K ⁻¹]	1040.14	1816.2	
γ	$(= c_p/c_v)$	1.43	2.35	
θ	[JKm ⁻¹ s ⁻¹]	6 10 ⁴	23 10 ³	

Données du problème de Riemann

$T _{t=0} = 300 \text{ K}$	partout
$(P, \tau_1) _{t=0}(T)$	à saturation
u = 0 m/s	partout

Géometrie

Phénomènes

- Dynamique
- Diffusion de la chaleur
- Capillarité
- Gravité
- Changement de phase

mesh: 80×80 ; $t_{final} = 1 s$

Approche par relaxation Mise en œuvre **Exemple(s)**

CAS TEST

2 Méthode numérique

• EOS globale à l'équilibre (maximisation d'une entropie)

- Système d'Euler strictement hyperbolique
- Unicité des solutions de Liu
- Approche par relaxation
- Schéma à pas fractionaires avec
 - effets thermiques ~> 2D implicite
 - capillarité → CSF [J.U. Brackbill, D.B. Kothe, C. Zemach]

• EOS globale à l'équilibre (maximisation d'une entropie)

• Système d'Euler strictement hyperbolique

- Unicité des solutions de Liu
- Approche par relaxation
- Schéma à pas fractionaires avec
 - effets thermiques ~> 2D implicite
 - capillarité → CSF [J.U. Brackbill, D.B. Kothe, C. Zemach]

- EOS globale à l'équilibre (maximisation d'une entropie)
- Système d'Euler strictement hyperbolique
- Unicité des solutions de Liu
- Approche par relaxation
- Schéma à pas fractionaires avec
 - effets thermiques ~> 2D implicite
 - capillarité → CSF [J.U. Brackbill, D.B. Kothe, C. Zemach]

- EOS globale à l'équilibre (maximisation d'une entropie)
- Système d'Euler strictement hyperbolique
- Unicité des solutions de Liu
- Approche par relaxation
- Schéma à pas fractionaires avec
 - effets thermiques ~> 2D implicite
 - capillarité → CSF [J.U. Brackbill, D.B. Kothe, C. Zemach]

- EOS globale à l'équilibre (maximisation d'une entropie)
- Système d'Euler strictement hyperbolique
- Unicité des solutions de Liu
- Approche par relaxation
- Schéma à pas fractionaires avec
 - effets thermiques ~> 2D implicite
 - capillarité → CSF [J.U. Brackbill, D.B. Kothe, C. Zemach]

- EOS globale à l'équilibre (maximisation d'une entropie)
- Système d'Euler strictement hyperbolique
- Unicité des solutions de Liu
- Approche par relaxation
- Schéma à pas fractionaires avec
 - effets thermiques ~> 2D implicite
 - capillarité ~→ CSF [J.U. Brackbill, D.B. Kothe, C. Zemach]
- EOS globale à l'équilibre (maximisation d'une entropie)
- Système d'Euler strictement hyperbolique
- Unicité des solutions de Liu
- Approche par relaxation
- Schéma à pas fractionaires avec
 - effets thermiques ~> 2D implicite
 - capillarité → CSF [J.U. Brackbill, D.B. Kothe, C. Zemach]